
Integrate the given expression, \[\int{\dfrac{{{e}^{x}}}{\sqrt{{{e}^{2x}}-1}}dx}\] .
Answer
606.6k+ views
Hint: Assume \[t={{e}^{x}}\] . Use the equation \[dt={{e}^{x}}dx\] and then simplify the expression in terms of t as \[\int{\dfrac{1}{\sqrt{{{t}^{2}}-1}}dt}\]. Consider \[t=\sec \theta \] . Use the equation \[dt=\sec \theta .\tan \theta d\theta \] , and then simplify the expression \[\int{\dfrac{1}{\sqrt{{{\sec }^{2}}\theta -1}}\sec \theta .\tan \theta d\theta }\] . We know that, \[\int{secxdx}=ln\left| secx\left. +tanx \right| \right.\] . Use this formula and solve the expression further. Then, express \[\theta \] in terms of t. And then, express t in terms of x as we assumed \[t={{e}^{x}}\] .
Complete step-by-step solution -
Let us assume, \[t={{e}^{x}}\]
\[{{t}^{2}}={{e}^{2x}}\] …………….(1)
Differentiating equation (1) with respect to x, we get
\[\dfrac{dt}{dx}={{e}^{x}}\]
\[\Rightarrow dt={{e}^{x}}dx\] ………………..(2)
Now, using equation (1) and equation (2), we can transform the expression \[\int{\dfrac{{{e}^{x}}}{\sqrt{{{e}^{2x}}-1}}dx}\] .
Transforming the expression, we get \[\int{\dfrac{1}{\sqrt{{{t}^{2}}-1}}dt}\] ……….(3)
Now, let us assume,
\[t=\sec \theta \] …………..(4)
Differentiating equation (4) with respect to \[\theta \] , we get
\[\dfrac{dt}{d\theta }=\sec \theta .\tan \theta \]
\[\Rightarrow dt=\sec \theta .\tan \theta d\theta \] ………………..(5)
Now, using equation (5), we can transform equation (3)
\[\int{\dfrac{1}{\sqrt{{{t}^{2}}-1}}dt}\]
\[=\int{\dfrac{1}{\sqrt{{{\sec }^{2}}\theta -1}}\sec \theta .\tan \theta d\theta }\] ……………….(6)
We know the identity, \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\]
\[\Rightarrow {{\sec }^{2}}\theta -1={{\tan }^{2}}\theta \] ………………………(7)
Now, using equation (7), we can transform equation (6)
\[=\int{\dfrac{1}{\sqrt{{{\sec }^{2}}\theta -1}}\sec \theta .\tan \theta d\theta }\]
\[\begin{align}
& =\int{\dfrac{1}{\sqrt{{{\tan }^{2}}\theta }}\sec \theta .\tan \theta d\theta } \\
& =\int{\dfrac{1}{\tan \theta }}.\sec \theta \tan \theta d\theta \\
\end{align}\]
\[=\int{\sec \theta d\theta }\] …………………(8)
We know that, \[\int{secxdx}=ln\left| secx\left. +tanx \right| \right.\] ………….(9)
Replacing x by \[\theta \] in the equation (9), we get
\[\int{secxdx}=ln\left| secx\left. +tanx \right| \right.\]
\[\Rightarrow \int{\sec \theta d\theta }=\ln \left| \sec \theta \left. +\tan \theta \right| \right.\] …………….(10)
From equation (4), we have
\[t=\sec \theta \]
We can find the value of \[\tan \theta \] using equation (7).
\[\begin{align}
& {{\sec }^{2}}\theta -1={{\tan }^{2}}\theta \\
& \Rightarrow {{t}^{2}}-1={{\tan }^{2}}\theta \\
& \Rightarrow \tan \theta =\sqrt{{{t}^{2}}-1} \\
\end{align}\]
Initially, we have assumed \[t={{e}^{x}}\]. Now, putting the value of t, we get
\[t=\sec \theta ={{e}^{x}}\]
\[\begin{align}
& \tan \theta =\sqrt{{{t}^{2}}-1} \\
& \Rightarrow \tan \theta =\sqrt{{{e}^{2x}}-1} \\
\end{align}\]
Now, putting the values of \[\sec \theta \] and \[\tan \theta \] in equation (10), we get
\[\Rightarrow \int{\sec \theta d\theta }=\ln \left| \sec \theta \left. +\tan \theta \right| \right.\]
\[=\ln \left| {{e}^{x}}\left. +\sqrt{{{e}^{2x}}-1} \right| \right.\]
Therefore, \[\int{\dfrac{{{e}^{x}}}{\sqrt{{{e}^{2x}}-1}}dx}=\ln \left| {{e}^{x}}\left. +\sqrt{{{e}^{2x}}-1} \right| \right.\] .
Note: In this question, one can think to assume \[{{e}^{2x}}\] as t in the expression \[\int{\dfrac{{{e}^{x}}}{\sqrt{{{e}^{2x}}-1}}dx}\] . But, if we do so then our equation will look like \[\int{\sqrt{t}.\dfrac{1}{\sqrt{{{t}^{2}}-1}}dx}\] . Here, we are unable to replace \[dx\] as \[dt\] . We can see that this expression has become complex to be solved further. So, this approach is not suitable for the integration of this expression.
Complete step-by-step solution -
Let us assume, \[t={{e}^{x}}\]
\[{{t}^{2}}={{e}^{2x}}\] …………….(1)
Differentiating equation (1) with respect to x, we get
\[\dfrac{dt}{dx}={{e}^{x}}\]
\[\Rightarrow dt={{e}^{x}}dx\] ………………..(2)
Now, using equation (1) and equation (2), we can transform the expression \[\int{\dfrac{{{e}^{x}}}{\sqrt{{{e}^{2x}}-1}}dx}\] .
Transforming the expression, we get \[\int{\dfrac{1}{\sqrt{{{t}^{2}}-1}}dt}\] ……….(3)
Now, let us assume,
\[t=\sec \theta \] …………..(4)
Differentiating equation (4) with respect to \[\theta \] , we get
\[\dfrac{dt}{d\theta }=\sec \theta .\tan \theta \]
\[\Rightarrow dt=\sec \theta .\tan \theta d\theta \] ………………..(5)
Now, using equation (5), we can transform equation (3)
\[\int{\dfrac{1}{\sqrt{{{t}^{2}}-1}}dt}\]
\[=\int{\dfrac{1}{\sqrt{{{\sec }^{2}}\theta -1}}\sec \theta .\tan \theta d\theta }\] ……………….(6)
We know the identity, \[{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1\]
\[\Rightarrow {{\sec }^{2}}\theta -1={{\tan }^{2}}\theta \] ………………………(7)
Now, using equation (7), we can transform equation (6)
\[=\int{\dfrac{1}{\sqrt{{{\sec }^{2}}\theta -1}}\sec \theta .\tan \theta d\theta }\]
\[\begin{align}
& =\int{\dfrac{1}{\sqrt{{{\tan }^{2}}\theta }}\sec \theta .\tan \theta d\theta } \\
& =\int{\dfrac{1}{\tan \theta }}.\sec \theta \tan \theta d\theta \\
\end{align}\]
\[=\int{\sec \theta d\theta }\] …………………(8)
We know that, \[\int{secxdx}=ln\left| secx\left. +tanx \right| \right.\] ………….(9)
Replacing x by \[\theta \] in the equation (9), we get
\[\int{secxdx}=ln\left| secx\left. +tanx \right| \right.\]
\[\Rightarrow \int{\sec \theta d\theta }=\ln \left| \sec \theta \left. +\tan \theta \right| \right.\] …………….(10)
From equation (4), we have
\[t=\sec \theta \]
We can find the value of \[\tan \theta \] using equation (7).
\[\begin{align}
& {{\sec }^{2}}\theta -1={{\tan }^{2}}\theta \\
& \Rightarrow {{t}^{2}}-1={{\tan }^{2}}\theta \\
& \Rightarrow \tan \theta =\sqrt{{{t}^{2}}-1} \\
\end{align}\]
Initially, we have assumed \[t={{e}^{x}}\]. Now, putting the value of t, we get
\[t=\sec \theta ={{e}^{x}}\]
\[\begin{align}
& \tan \theta =\sqrt{{{t}^{2}}-1} \\
& \Rightarrow \tan \theta =\sqrt{{{e}^{2x}}-1} \\
\end{align}\]
Now, putting the values of \[\sec \theta \] and \[\tan \theta \] in equation (10), we get
\[\Rightarrow \int{\sec \theta d\theta }=\ln \left| \sec \theta \left. +\tan \theta \right| \right.\]
\[=\ln \left| {{e}^{x}}\left. +\sqrt{{{e}^{2x}}-1} \right| \right.\]
Therefore, \[\int{\dfrac{{{e}^{x}}}{\sqrt{{{e}^{2x}}-1}}dx}=\ln \left| {{e}^{x}}\left. +\sqrt{{{e}^{2x}}-1} \right| \right.\] .
Note: In this question, one can think to assume \[{{e}^{2x}}\] as t in the expression \[\int{\dfrac{{{e}^{x}}}{\sqrt{{{e}^{2x}}-1}}dx}\] . But, if we do so then our equation will look like \[\int{\sqrt{t}.\dfrac{1}{\sqrt{{{t}^{2}}-1}}dx}\] . Here, we are unable to replace \[dx\] as \[dt\] . We can see that this expression has become complex to be solved further. So, this approach is not suitable for the integration of this expression.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

