
Integrate the function \[x{(\log x)^2}\].
Answer
581.7k+ views
Hint: Apply ILATE Method: Integrate in the order from Inverse Logarithmic Algebra Trigonometry and exponential functions, so, integrate by taking logarithmic function as first function and algebraic function as second.
Complete step by step answer:
Given: the given function is \[x{(\log x)^2}\].
Given function with integration sign can be written as \[\int {x{{(\log x)}^2}dx} \].
Apply the ILATE method for integration of the provided expression.
To solve the given expression, use the formula:
\[{\text{first function}}\int {{\text{second function}} - \int {\left( {\dfrac{d}{{dx}}{\text{first function}}\int {{\text{second functiondx}}} } \right)dx} } \].
There are two types of functions in the given function, first is of algebraic type and second in the parantheses is of logarithmic type.
By using ILATE rule, take x as the second function and \[{\left( {\log x} \right)^2}\] as the first function and substitute in the below formula:
\[{\text{first function}}\int {{\text{second function}} - \int {\left( {\dfrac{d}{{dx}}{\text{first function}}\int {{\text{second functiondx}}} } \right)dx} } \]
\[{(\log x)^2}\int {xdx - } \int {\left( {\dfrac{d}{{dx}}{{\left( {\log x} \right)}^2}\int {xdx} } \right)} dx\]
It is known that $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x},{\text{ }}\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$ and $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $.
So,
\[
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\left( {2\log x\left( {\dfrac{1}{x}} \right)\left( {\dfrac{{{x^2}}}{2}} \right)} \right)dx} \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \int {x\log xdx} \\
\]
To solve the second integration term, take x as the second function and \[\log x\] as the first function and substitute in the below formula:
\[{\text{first function}}\int {{\text{second function}} - \int {\left( {\dfrac{d}{{dx}}{\text{first function}}\int {{\text{second functiondx}}} } \right)dx} } \]
\[{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\int {xdx - \int {\left( {\dfrac{d}{{dx}}(\log x)\int {xdx} } \right)dx} } } \right]\]
Again use the formula of integration and differentiation, $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x},{\text{ }}\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$ and $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $.
\[
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\dfrac{1}{x} \times \dfrac{{{x^2}}}{2}dx} } \right] \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\dfrac{x}{2}dx} } \right] \\
\]
Simplify the obtained expression further by using $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $.
\[
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \dfrac{1}{2} \times \dfrac{{{x^2}}}{2} + C} \right] \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \dfrac{{{x^2}}}{4} + C} \right] \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \log x\left( {\dfrac{{{x^2}}}{2}} \right) + \dfrac{{{x^2}}}{4} + C \\
\]
Hence, \[\int {x{{(\log x)}^2}dx} = {(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \log x\left( {\dfrac{{{x^2}}}{2}} \right) + \dfrac{{{x^2}}}{4} + C\], or it can be said that the integration of the function \[x{(\log x)^2}\] is \[{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \log x\left( {\dfrac{{{x^2}}}{2}} \right) + \dfrac{{{x^2}}}{4} + C\].
Note: ILATE method is applied two times to find the integration easily. In such a problem, any other method applied to find the integration will make it more complicated.
Complete step by step answer:
Given: the given function is \[x{(\log x)^2}\].
Given function with integration sign can be written as \[\int {x{{(\log x)}^2}dx} \].
Apply the ILATE method for integration of the provided expression.
To solve the given expression, use the formula:
\[{\text{first function}}\int {{\text{second function}} - \int {\left( {\dfrac{d}{{dx}}{\text{first function}}\int {{\text{second functiondx}}} } \right)dx} } \].
There are two types of functions in the given function, first is of algebraic type and second in the parantheses is of logarithmic type.
By using ILATE rule, take x as the second function and \[{\left( {\log x} \right)^2}\] as the first function and substitute in the below formula:
\[{\text{first function}}\int {{\text{second function}} - \int {\left( {\dfrac{d}{{dx}}{\text{first function}}\int {{\text{second functiondx}}} } \right)dx} } \]
\[{(\log x)^2}\int {xdx - } \int {\left( {\dfrac{d}{{dx}}{{\left( {\log x} \right)}^2}\int {xdx} } \right)} dx\]
It is known that $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x},{\text{ }}\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$ and $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $.
So,
\[
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\left( {2\log x\left( {\dfrac{1}{x}} \right)\left( {\dfrac{{{x^2}}}{2}} \right)} \right)dx} \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \int {x\log xdx} \\
\]
To solve the second integration term, take x as the second function and \[\log x\] as the first function and substitute in the below formula:
\[{\text{first function}}\int {{\text{second function}} - \int {\left( {\dfrac{d}{{dx}}{\text{first function}}\int {{\text{second functiondx}}} } \right)dx} } \]
\[{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\int {xdx - \int {\left( {\dfrac{d}{{dx}}(\log x)\int {xdx} } \right)dx} } } \right]\]
Again use the formula of integration and differentiation, $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x},{\text{ }}\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$ and $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $.
\[
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\dfrac{1}{x} \times \dfrac{{{x^2}}}{2}dx} } \right] \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\dfrac{x}{2}dx} } \right] \\
\]
Simplify the obtained expression further by using $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $.
\[
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \dfrac{1}{2} \times \dfrac{{{x^2}}}{2} + C} \right] \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \dfrac{{{x^2}}}{4} + C} \right] \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \log x\left( {\dfrac{{{x^2}}}{2}} \right) + \dfrac{{{x^2}}}{4} + C \\
\]
Hence, \[\int {x{{(\log x)}^2}dx} = {(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \log x\left( {\dfrac{{{x^2}}}{2}} \right) + \dfrac{{{x^2}}}{4} + C\], or it can be said that the integration of the function \[x{(\log x)^2}\] is \[{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \log x\left( {\dfrac{{{x^2}}}{2}} \right) + \dfrac{{{x^2}}}{4} + C\].
Note: ILATE method is applied two times to find the integration easily. In such a problem, any other method applied to find the integration will make it more complicated.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

