
Integrate the function \[x{(\log x)^2}\].
Answer
597k+ views
Hint: Apply ILATE Method: Integrate in the order from Inverse Logarithmic Algebra Trigonometry and exponential functions, so, integrate by taking logarithmic function as first function and algebraic function as second.
Complete step by step answer:
Given: the given function is \[x{(\log x)^2}\].
Given function with integration sign can be written as \[\int {x{{(\log x)}^2}dx} \].
Apply the ILATE method for integration of the provided expression.
To solve the given expression, use the formula:
\[{\text{first function}}\int {{\text{second function}} - \int {\left( {\dfrac{d}{{dx}}{\text{first function}}\int {{\text{second functiondx}}} } \right)dx} } \].
There are two types of functions in the given function, first is of algebraic type and second in the parantheses is of logarithmic type.
By using ILATE rule, take x as the second function and \[{\left( {\log x} \right)^2}\] as the first function and substitute in the below formula:
\[{\text{first function}}\int {{\text{second function}} - \int {\left( {\dfrac{d}{{dx}}{\text{first function}}\int {{\text{second functiondx}}} } \right)dx} } \]
\[{(\log x)^2}\int {xdx - } \int {\left( {\dfrac{d}{{dx}}{{\left( {\log x} \right)}^2}\int {xdx} } \right)} dx\]
It is known that $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x},{\text{ }}\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$ and $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $.
So,
\[
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\left( {2\log x\left( {\dfrac{1}{x}} \right)\left( {\dfrac{{{x^2}}}{2}} \right)} \right)dx} \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \int {x\log xdx} \\
\]
To solve the second integration term, take x as the second function and \[\log x\] as the first function and substitute in the below formula:
\[{\text{first function}}\int {{\text{second function}} - \int {\left( {\dfrac{d}{{dx}}{\text{first function}}\int {{\text{second functiondx}}} } \right)dx} } \]
\[{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\int {xdx - \int {\left( {\dfrac{d}{{dx}}(\log x)\int {xdx} } \right)dx} } } \right]\]
Again use the formula of integration and differentiation, $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x},{\text{ }}\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$ and $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $.
\[
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\dfrac{1}{x} \times \dfrac{{{x^2}}}{2}dx} } \right] \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\dfrac{x}{2}dx} } \right] \\
\]
Simplify the obtained expression further by using $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $.
\[
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \dfrac{1}{2} \times \dfrac{{{x^2}}}{2} + C} \right] \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \dfrac{{{x^2}}}{4} + C} \right] \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \log x\left( {\dfrac{{{x^2}}}{2}} \right) + \dfrac{{{x^2}}}{4} + C \\
\]
Hence, \[\int {x{{(\log x)}^2}dx} = {(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \log x\left( {\dfrac{{{x^2}}}{2}} \right) + \dfrac{{{x^2}}}{4} + C\], or it can be said that the integration of the function \[x{(\log x)^2}\] is \[{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \log x\left( {\dfrac{{{x^2}}}{2}} \right) + \dfrac{{{x^2}}}{4} + C\].
Note: ILATE method is applied two times to find the integration easily. In such a problem, any other method applied to find the integration will make it more complicated.
Complete step by step answer:
Given: the given function is \[x{(\log x)^2}\].
Given function with integration sign can be written as \[\int {x{{(\log x)}^2}dx} \].
Apply the ILATE method for integration of the provided expression.
To solve the given expression, use the formula:
\[{\text{first function}}\int {{\text{second function}} - \int {\left( {\dfrac{d}{{dx}}{\text{first function}}\int {{\text{second functiondx}}} } \right)dx} } \].
There are two types of functions in the given function, first is of algebraic type and second in the parantheses is of logarithmic type.
By using ILATE rule, take x as the second function and \[{\left( {\log x} \right)^2}\] as the first function and substitute in the below formula:
\[{\text{first function}}\int {{\text{second function}} - \int {\left( {\dfrac{d}{{dx}}{\text{first function}}\int {{\text{second functiondx}}} } \right)dx} } \]
\[{(\log x)^2}\int {xdx - } \int {\left( {\dfrac{d}{{dx}}{{\left( {\log x} \right)}^2}\int {xdx} } \right)} dx\]
It is known that $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x},{\text{ }}\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$ and $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $.
So,
\[
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\left( {2\log x\left( {\dfrac{1}{x}} \right)\left( {\dfrac{{{x^2}}}{2}} \right)} \right)dx} \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \int {x\log xdx} \\
\]
To solve the second integration term, take x as the second function and \[\log x\] as the first function and substitute in the below formula:
\[{\text{first function}}\int {{\text{second function}} - \int {\left( {\dfrac{d}{{dx}}{\text{first function}}\int {{\text{second functiondx}}} } \right)dx} } \]
\[{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\int {xdx - \int {\left( {\dfrac{d}{{dx}}(\log x)\int {xdx} } \right)dx} } } \right]\]
Again use the formula of integration and differentiation, $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x},{\text{ }}\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$ and $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $.
\[
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\dfrac{1}{x} \times \dfrac{{{x^2}}}{2}dx} } \right] \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\dfrac{x}{2}dx} } \right] \\
\]
Simplify the obtained expression further by using $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $.
\[
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \dfrac{1}{2} \times \dfrac{{{x^2}}}{2} + C} \right] \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \left[ {\log x\left( {\dfrac{{{x^2}}}{2}} \right) - \dfrac{{{x^2}}}{4} + C} \right] \\
{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \log x\left( {\dfrac{{{x^2}}}{2}} \right) + \dfrac{{{x^2}}}{4} + C \\
\]
Hence, \[\int {x{{(\log x)}^2}dx} = {(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \log x\left( {\dfrac{{{x^2}}}{2}} \right) + \dfrac{{{x^2}}}{4} + C\], or it can be said that the integration of the function \[x{(\log x)^2}\] is \[{(\log x)^2}\left( {\dfrac{{{x^2}}}{2}} \right) - \log x\left( {\dfrac{{{x^2}}}{2}} \right) + \dfrac{{{x^2}}}{4} + C\].
Note: ILATE method is applied two times to find the integration easily. In such a problem, any other method applied to find the integration will make it more complicated.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

