
Integrate the function $x {\tan}^{-1}x$.
Answer
610.2k+ views
Hint: We know that this function is not integrable directly. So, we will use integration by parts to solve this function. The formula is given by-
$\int {\text{v}}\dfrac{{du}}{{dx}}.dx = vu - \int {\text{u}}\dfrac{{dv}}{{dx}}dx$
Complete step-by-step solution -
We don’t know the integration of tan-1x, so we will assume v = tan-1x and u = x. So, we can write that-
$\Rightarrow \int x{\tan ^{ - 1}}xdx = \left[ {{{\tan }^{ - 1}}x\int xdx} \right] - \int \left[ {\left( {\int xdx} \right).\dfrac{{d{{\tan }^{ - 1}}x}}{{dx}}} \right]dx$
$\Rightarrow \int x{\tan ^{ - 1}}xdx = \dfrac{{{x^2}}}{2}{\tan ^{ - 1}}x - \int \dfrac{{{x^2}}}{{2\left( {1 + {x^2}} \right)}}dx$
$\Rightarrow \int x{\tan ^{ - 1}}xdx = \dfrac{{{x^2}}}{2}{\tan ^{ - 1}}x - \dfrac{1}{2}\int \dfrac{{{x^2} + 1 - 1}}{{\left( {1 + {x^2}} \right)}}dx$
$\Rightarrow \Rightarrow \int x{\tan ^{ - 1}}xdx = \dfrac{{{x^2}}}{2}{\tan ^{ - 1}}x - \dfrac{1}{2}\int 1 - \dfrac{1}{{1 + {x^2}}}dx$
$\Rightarrow \int x{\tan ^{ - 1}}xdx = \dfrac{{{x^2}}}{2}{\tan ^{ - 1}}x - \dfrac{1}{2}\left( {x - {{\tan }^{ - 1}}x} \right) + c$
$\Rightarrow \int x{\tan ^{ - 1}}xdx = \dfrac{{{x^2}}}{2}{\tan ^{ - 1}}x - \dfrac{1}{2}x + \dfrac{1}{2}{\tan ^{ - 1}}x + c$
This is the required answer.
Note: We should choose wisely which part we should choose as u and v. This is because we have to integrate one of the two functions. So choose carefully which function to integrate. Also, we should always add the constant of integration when we solve indefinite integration.
$\int {\text{v}}\dfrac{{du}}{{dx}}.dx = vu - \int {\text{u}}\dfrac{{dv}}{{dx}}dx$
Complete step-by-step solution -
We don’t know the integration of tan-1x, so we will assume v = tan-1x and u = x. So, we can write that-
$\Rightarrow \int x{\tan ^{ - 1}}xdx = \left[ {{{\tan }^{ - 1}}x\int xdx} \right] - \int \left[ {\left( {\int xdx} \right).\dfrac{{d{{\tan }^{ - 1}}x}}{{dx}}} \right]dx$
$\Rightarrow \int x{\tan ^{ - 1}}xdx = \dfrac{{{x^2}}}{2}{\tan ^{ - 1}}x - \int \dfrac{{{x^2}}}{{2\left( {1 + {x^2}} \right)}}dx$
$\Rightarrow \int x{\tan ^{ - 1}}xdx = \dfrac{{{x^2}}}{2}{\tan ^{ - 1}}x - \dfrac{1}{2}\int \dfrac{{{x^2} + 1 - 1}}{{\left( {1 + {x^2}} \right)}}dx$
$\Rightarrow \Rightarrow \int x{\tan ^{ - 1}}xdx = \dfrac{{{x^2}}}{2}{\tan ^{ - 1}}x - \dfrac{1}{2}\int 1 - \dfrac{1}{{1 + {x^2}}}dx$
$\Rightarrow \int x{\tan ^{ - 1}}xdx = \dfrac{{{x^2}}}{2}{\tan ^{ - 1}}x - \dfrac{1}{2}\left( {x - {{\tan }^{ - 1}}x} \right) + c$
$\Rightarrow \int x{\tan ^{ - 1}}xdx = \dfrac{{{x^2}}}{2}{\tan ^{ - 1}}x - \dfrac{1}{2}x + \dfrac{1}{2}{\tan ^{ - 1}}x + c$
This is the required answer.
Note: We should choose wisely which part we should choose as u and v. This is because we have to integrate one of the two functions. So choose carefully which function to integrate. Also, we should always add the constant of integration when we solve indefinite integration.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

