
Integrate the function ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ .
Answer
522.9k+ views
Hint: We first rewrite the integrand as ${{\left( {{\sin }^{-1}}x \right)}^{2}}.1$ . After that, we assume u as ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ and v as $1$ . Doing so, we now carry out the integration by parts according to $\int{uvdx}=u\int{vdx}-\int{\left( \dfrac{du}{dx}\int{vdx} \right)}$ and gradually end up in solving it.
Complete step-by-step answer:
In this problem, we need to integrate the function ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ . Integrating this function with the help of integration by parts will be the easiest method. According to the integration by parts rule, if there are two functions “u” and “v” of the variable “x”, then the integration of $\left( uv \right)$ will be as follow,
$\int{uvdx}=u\int{vdx}-\int{\left( \dfrac{du}{dx}\int{vdx} \right)}$
Let $I=\int{{{\left( {{\sin }^{-1}}x \right)}^{2}}.1dx}$
Now, we know the thumb rule of by parts, which is ILATE (Inverse Logarithmic Algebraic Trigonometric Exponential). This is the priority order of functions that are to be considered as the first function. If we compare the functions u and v with our problem, we can write u (the first function) as ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ since it is Inverse and comes first in the list, and v (the second function) as $1$ since being algebraic, it comes third in the list. Then, integrating their product by parts, we get,
\[\Rightarrow I={{\left( {{\sin }^{-1}}x \right)}^{2}}\int{1dx}-\int{\left\{ \dfrac{d\left( {{\left( {{\sin }^{-1}}x \right)}^{2}} \right)}{dx}\left( \int{1dx} \right) \right\}dx}....\left( i \right)\]
Now, the derivative of ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ can be done as,
$\begin{align}
& \dfrac{d\left( {{\left( {{\sin }^{-1}}x \right)}^{2}} \right)}{dx}=\dfrac{d\left( {{\left( {{\sin }^{-1}}x \right)}^{2}} \right)}{d\left( {{\sin }^{-1}}x \right)}\times \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx} \\
& \Rightarrow \dfrac{d\left( {{\left( {{\sin }^{-1}}x \right)}^{2}} \right)}{dx}=2\left( {{\sin }^{-1}}x \right)\times \dfrac{1}{\sqrt{1-{{x}^{2}}}}=\dfrac{2\left( {{\sin }^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}} \\
\end{align}$
This value of $\dfrac{d\left( {{\left( {{\sin }^{-1}}x \right)}^{2}} \right)}{dx}$ can be inserted in the integral (i) and rewritten as,
\[\Rightarrow I={{\left( {{\sin }^{-1}}x \right)}^{2}}\int{1dx}-\int{\left\{ \dfrac{2\left( {{\sin }^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}}\left( \int{1dx} \right) \right\}dx}\]
The integration of $\int{1dx}$ is simply x. So, the above integral becomes,
\[\Rightarrow I={{\left( {{\sin }^{-1}}x \right)}^{2}}.x-\int{\left\{ \dfrac{2\left( {{\sin }^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}}.x \right\}dx}\]
The above integral can be rearranged as,
\[\Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\int{\left\{ \left( {{\sin }^{-1}}x \right).\dfrac{-2x}{\sqrt{1-{{x}^{2}}}} \right\}dx}\]
Again, integrating by parts the integrand \[\left\{ \left( {{\sin }^{-1}}x \right).\dfrac{-2x}{\sqrt{1-{{x}^{2}}}} \right\}\] , we get,
\[\begin{align}
& \Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ \left( {{\sin }^{-1}}x \right)\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}dx}-\int{\left\{ \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}dx} \right\}dx} \right] \\
& \Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ 2\left( {{\sin }^{-1}}x \right)\int{\dfrac{-x}{\sqrt{1-{{x}^{2}}}}dx}-\int{\left\{ \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}.2\int{\dfrac{-x}{\sqrt{1-{{x}^{2}}}}dx} \right\}dx} \right] \\
\end{align}\]
Now, the derivative $\dfrac{d\sqrt{1-{{x}^{2}}}}{dx}=\dfrac{1}{2\sqrt{1-{{x}^{2}}}}\times \left( -2x \right)=-\dfrac{x}{\sqrt{1-{{x}^{2}}}}$ . So, the above integrand can be written as,
\[\Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ 2\left( {{\sin }^{-1}}x \right)\int{d\left( \sqrt{1-{{x}^{2}}} \right)}-\int{\left\{ \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}.2\int{d\left( \sqrt{1-{{x}^{2}}} \right)} \right\}dx} \right]\]
Evaluating the above integral, we get,
\[\Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ 2\left( {{\sin }^{-1}}x \right).\sqrt{1-{{x}^{2}}}-\int{\left\{ \dfrac{1}{\sqrt{1-{{x}^{2}}}}.2\sqrt{1-{{x}^{2}}} \right\}dx} \right]\]
Simplifying the above integral, we get,
\[\Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ 2\left( {{\sin }^{-1}}x \right).\sqrt{1-{{x}^{2}}}-2\int{dx} \right]\]
The integration of $\int{1dx}$ is simply x. So, the above integral becomes,
\[\Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+2\left( {{\sin }^{-1}}x \right).\sqrt{1-{{x}^{2}}}-2x+c\]
Thus, we can conclude that the integration of ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ is \[x{{\left( {{\sin }^{-1}}x \right)}^{2}}+2\left( {{\sin }^{-1}}x \right).\sqrt{1-{{x}^{2}}}-2x+c\] .
Note: Solving by the “by parts” method is the easiest. Other methods like the substitution method may give a result, but it will not be worth the time taken. This is a very long integration, so we must be very careful in the calculations and should remember to put the integration constant in the end.
Complete step-by-step answer:
In this problem, we need to integrate the function ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ . Integrating this function with the help of integration by parts will be the easiest method. According to the integration by parts rule, if there are two functions “u” and “v” of the variable “x”, then the integration of $\left( uv \right)$ will be as follow,
$\int{uvdx}=u\int{vdx}-\int{\left( \dfrac{du}{dx}\int{vdx} \right)}$
Let $I=\int{{{\left( {{\sin }^{-1}}x \right)}^{2}}.1dx}$
Now, we know the thumb rule of by parts, which is ILATE (Inverse Logarithmic Algebraic Trigonometric Exponential). This is the priority order of functions that are to be considered as the first function. If we compare the functions u and v with our problem, we can write u (the first function) as ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ since it is Inverse and comes first in the list, and v (the second function) as $1$ since being algebraic, it comes third in the list. Then, integrating their product by parts, we get,
\[\Rightarrow I={{\left( {{\sin }^{-1}}x \right)}^{2}}\int{1dx}-\int{\left\{ \dfrac{d\left( {{\left( {{\sin }^{-1}}x \right)}^{2}} \right)}{dx}\left( \int{1dx} \right) \right\}dx}....\left( i \right)\]
Now, the derivative of ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ can be done as,
$\begin{align}
& \dfrac{d\left( {{\left( {{\sin }^{-1}}x \right)}^{2}} \right)}{dx}=\dfrac{d\left( {{\left( {{\sin }^{-1}}x \right)}^{2}} \right)}{d\left( {{\sin }^{-1}}x \right)}\times \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx} \\
& \Rightarrow \dfrac{d\left( {{\left( {{\sin }^{-1}}x \right)}^{2}} \right)}{dx}=2\left( {{\sin }^{-1}}x \right)\times \dfrac{1}{\sqrt{1-{{x}^{2}}}}=\dfrac{2\left( {{\sin }^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}} \\
\end{align}$
This value of $\dfrac{d\left( {{\left( {{\sin }^{-1}}x \right)}^{2}} \right)}{dx}$ can be inserted in the integral (i) and rewritten as,
\[\Rightarrow I={{\left( {{\sin }^{-1}}x \right)}^{2}}\int{1dx}-\int{\left\{ \dfrac{2\left( {{\sin }^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}}\left( \int{1dx} \right) \right\}dx}\]
The integration of $\int{1dx}$ is simply x. So, the above integral becomes,
\[\Rightarrow I={{\left( {{\sin }^{-1}}x \right)}^{2}}.x-\int{\left\{ \dfrac{2\left( {{\sin }^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}}.x \right\}dx}\]
The above integral can be rearranged as,
\[\Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\int{\left\{ \left( {{\sin }^{-1}}x \right).\dfrac{-2x}{\sqrt{1-{{x}^{2}}}} \right\}dx}\]
Again, integrating by parts the integrand \[\left\{ \left( {{\sin }^{-1}}x \right).\dfrac{-2x}{\sqrt{1-{{x}^{2}}}} \right\}\] , we get,
\[\begin{align}
& \Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ \left( {{\sin }^{-1}}x \right)\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}dx}-\int{\left\{ \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}dx} \right\}dx} \right] \\
& \Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ 2\left( {{\sin }^{-1}}x \right)\int{\dfrac{-x}{\sqrt{1-{{x}^{2}}}}dx}-\int{\left\{ \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}.2\int{\dfrac{-x}{\sqrt{1-{{x}^{2}}}}dx} \right\}dx} \right] \\
\end{align}\]
Now, the derivative $\dfrac{d\sqrt{1-{{x}^{2}}}}{dx}=\dfrac{1}{2\sqrt{1-{{x}^{2}}}}\times \left( -2x \right)=-\dfrac{x}{\sqrt{1-{{x}^{2}}}}$ . So, the above integrand can be written as,
\[\Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ 2\left( {{\sin }^{-1}}x \right)\int{d\left( \sqrt{1-{{x}^{2}}} \right)}-\int{\left\{ \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}.2\int{d\left( \sqrt{1-{{x}^{2}}} \right)} \right\}dx} \right]\]
Evaluating the above integral, we get,
\[\Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ 2\left( {{\sin }^{-1}}x \right).\sqrt{1-{{x}^{2}}}-\int{\left\{ \dfrac{1}{\sqrt{1-{{x}^{2}}}}.2\sqrt{1-{{x}^{2}}} \right\}dx} \right]\]
Simplifying the above integral, we get,
\[\Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ 2\left( {{\sin }^{-1}}x \right).\sqrt{1-{{x}^{2}}}-2\int{dx} \right]\]
The integration of $\int{1dx}$ is simply x. So, the above integral becomes,
\[\Rightarrow I=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+2\left( {{\sin }^{-1}}x \right).\sqrt{1-{{x}^{2}}}-2x+c\]
Thus, we can conclude that the integration of ${{\left( {{\sin }^{-1}}x \right)}^{2}}$ is \[x{{\left( {{\sin }^{-1}}x \right)}^{2}}+2\left( {{\sin }^{-1}}x \right).\sqrt{1-{{x}^{2}}}-2x+c\] .
Note: Solving by the “by parts” method is the easiest. Other methods like the substitution method may give a result, but it will not be worth the time taken. This is a very long integration, so we must be very careful in the calculations and should remember to put the integration constant in the end.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

