
Integrate the following:$\dfrac{\sqrt{{{\sin }^{4}}x+{{\cos }^{4}}x}}{{{\sin }^{3}}x\cos x}dx,x\in \left( 0,\dfrac{\pi }{2} \right)$
Answer
513.6k+ views
Hint: For solving this problem, first convert the whole quantity into tan function by using division. Now, substitute tan x to some other variable u. Again, substitute square of u to some other variable t. At last, substitute t as tan function of theta. Now, simplify all the variables and integrate using standard formulas.
Complete step-by-step answer:
First we have to convert whole quantity into tan function,
Dividing both the numerator and denominator by ${{\cos }^{2}}x$ and manipulating to convert whole quantity in tan, we get:
\[\begin{align}
& \Rightarrow \dfrac{\sqrt{\dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}+\dfrac{{{\cos }^{4}}x}{{{\cos }^{4}}x}}}{\dfrac{{{\sin }^{3}}x\cos x}{{{\cos }^{2}}x}} \\
& \Rightarrow \dfrac{\sqrt{{{\tan }^{4}}x+1}}{{{\tan }^{2}}x\dfrac{\sin x}{\cos x}{{\cos }^{2}}x}dx \\
& \Rightarrow \dfrac{\sqrt{{{\tan }^{4}}x+1}}{{{\tan }^{3}}x}{{\sec }^{2}}xdx \\
\end{align}\]
Let, u = tan x
Differentiation with respect to the x will give us:
$\begin{align}
& \dfrac{du}{dx}={{\sec }^{2}}x \\
& du={{\sec }^{2}}xdx \\
\end{align}$
As, $\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x$
Replacing with variables of u in the expression, we get:
$\int{\dfrac{\sqrt{{{u}^{4}}+1}}{{{u}^{3}}}}du$
Again, let ${{u}^{2}}=t$
Differentiation with respect to u gives us:
$\begin{align}
& 2u=\dfrac{dt}{du} \\
& 2udu=dt \\
& du=\dfrac{dt}{2u}=\dfrac{dt}{\sqrt{t}} \\
\end{align}$
As, $\dfrac{d}{du}\left( {{u}^{2}} \right)=2u$
Replacing the value of ${{u}^{2}}\text{ and }du$ in variables of t, we get:
$\begin{align}
& \Rightarrow \int{\dfrac{\sqrt{{{t}^{2}}+1}}{{{t}^{\dfrac{3}{2}}}}}\times \dfrac{1}{2\sqrt{t}}dt \\
& \Rightarrow \dfrac{1}{2}\int{\dfrac{\sqrt{{{t}^{2}}+1}}{{{t}^{2}}}}dt \\
\end{align}$
Finally, let $t=\tan \theta $
Differentiation with respect to the $\theta $ will give us:
$\begin{align}
& \dfrac{dt}{d\theta }={{\sec }^{2}}\theta \\
& \Rightarrow dt={{\sec }^{2}}\theta d\theta \\
\end{align}$
As, $\dfrac{d}{d\theta }\left( \tan \theta \right)={{\sec }^{2}}\theta $
Putting the value of the dt and t in the expression, we get:
$\Rightarrow \dfrac{1}{2}\int{\dfrac{\sqrt{{{\tan }^{2}}\theta +1}}{{{\tan }^{2}}\theta }}{{\sec }^{2}}\theta d\theta $
Using the identity ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ and ${\dfrac{1}{{\tan}^{2}\theta}={\cot}^{2}\theta}$ , we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\int{\dfrac{\sec \theta }{{{\tan }^{2}}\theta }\left( {{\tan }^{2}}\theta +1 \right)d\theta } \\
& \Rightarrow \dfrac{1}{2}\int{\sec \theta \left( \dfrac{{{\tan }^{2}}\theta +1}{{{\tan }^{2}}\theta } \right)d\theta } \\
& \Rightarrow \dfrac{1}{2}\int{\sec \theta \left( 1+{{\cot }^{2}}\theta \right)d\theta } \\
\end{align}$
On opening the inner brackets, we get simplified expression as:
$\Rightarrow \dfrac{1}{2}\left[ \int{\sec \theta d\theta +}\int{\cot \theta \csc \theta d\theta } \right]$
The above expression is obtained by using the property:
$\begin{align}
& \sec \theta \times {{\cot }^{2}}\theta =\dfrac{1}{\cos \theta }\times \dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \\
& \therefore \dfrac{\cos \theta }{{{\sin }^{2}}\theta }=\cot \theta \csc \theta \\
\end{align}$
Integrating the above expression, we get:
$\Rightarrow \dfrac{1}{2}\left[ \int{\sec \theta d\theta +}\int{\cot \theta \csc \theta d\theta } \right]$
Now, by using standard integration results:
$\begin{align}
& \int{\sec \theta =\ln \left| \sec \theta +\tan \theta \right|} \\
& \int{\cot \theta \csc \theta =\csc \theta } \\
\end{align}$
$\Rightarrow \dfrac{1}{2}\left[ \ln \left| \sec \theta +\tan \theta \right|-\csc \theta \right]+c$
Replacing the value $\sec \theta ,\tan \theta \text{ and }\csc \theta $ in terms of previous substitution of t, we get:
\[\begin{align}
& \text{As, t}=\tan \theta \\
& \sec \theta =\sqrt{1+{{t}^{2}}},\csc \theta =\dfrac{\sqrt{1+{{t}^{2}}}}{t} \\
& \Rightarrow \dfrac{1}{2}\left[ \ln \left| \sqrt{1+{{t}^{2}}}+t \right|-\dfrac{\sqrt{1+{{t}^{2}}}}{{{t}^{2}}} \right]+c \\
\end{align}\]
Now, replacing t with u, we get
\[\begin{align}
& \text{As, }t={{u}^{2}} \\
& \Rightarrow \dfrac{1}{2}\left[ \ln \left| \sqrt{1+{{u}^{4}}}+{{u}^{2}} \right|-\dfrac{\sqrt{1+{{u}^{4}}}}{{{u}^{2}}} \right]+c \\
\end{align}\]
Putting the value of u = tan x, we get:
\[\Rightarrow \dfrac{1}{2}\left[ \ln \left| \sqrt{1+{{\tan }^{4}}x}+{{\tan }^{2}}x \right|-\dfrac{\sqrt{1+{{\tan }^{4}}x}}{{{\tan }^{2}}x} \right]+c\]
The above expression is in terms of variables present in question and hence it is the final answer.
Note: Students must be careful while doing the substitution of one function to another. The corresponding multiplication factor in the differentiation should be accommodated in the same step to avoid errors. This question must be remembered by students due to three different substitution steps.
Complete step-by-step answer:
First we have to convert whole quantity into tan function,
Dividing both the numerator and denominator by ${{\cos }^{2}}x$ and manipulating to convert whole quantity in tan, we get:
\[\begin{align}
& \Rightarrow \dfrac{\sqrt{\dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}+\dfrac{{{\cos }^{4}}x}{{{\cos }^{4}}x}}}{\dfrac{{{\sin }^{3}}x\cos x}{{{\cos }^{2}}x}} \\
& \Rightarrow \dfrac{\sqrt{{{\tan }^{4}}x+1}}{{{\tan }^{2}}x\dfrac{\sin x}{\cos x}{{\cos }^{2}}x}dx \\
& \Rightarrow \dfrac{\sqrt{{{\tan }^{4}}x+1}}{{{\tan }^{3}}x}{{\sec }^{2}}xdx \\
\end{align}\]
Let, u = tan x
Differentiation with respect to the x will give us:
$\begin{align}
& \dfrac{du}{dx}={{\sec }^{2}}x \\
& du={{\sec }^{2}}xdx \\
\end{align}$
As, $\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x$
Replacing with variables of u in the expression, we get:
$\int{\dfrac{\sqrt{{{u}^{4}}+1}}{{{u}^{3}}}}du$
Again, let ${{u}^{2}}=t$
Differentiation with respect to u gives us:
$\begin{align}
& 2u=\dfrac{dt}{du} \\
& 2udu=dt \\
& du=\dfrac{dt}{2u}=\dfrac{dt}{\sqrt{t}} \\
\end{align}$
As, $\dfrac{d}{du}\left( {{u}^{2}} \right)=2u$
Replacing the value of ${{u}^{2}}\text{ and }du$ in variables of t, we get:
$\begin{align}
& \Rightarrow \int{\dfrac{\sqrt{{{t}^{2}}+1}}{{{t}^{\dfrac{3}{2}}}}}\times \dfrac{1}{2\sqrt{t}}dt \\
& \Rightarrow \dfrac{1}{2}\int{\dfrac{\sqrt{{{t}^{2}}+1}}{{{t}^{2}}}}dt \\
\end{align}$
Finally, let $t=\tan \theta $
Differentiation with respect to the $\theta $ will give us:
$\begin{align}
& \dfrac{dt}{d\theta }={{\sec }^{2}}\theta \\
& \Rightarrow dt={{\sec }^{2}}\theta d\theta \\
\end{align}$
As, $\dfrac{d}{d\theta }\left( \tan \theta \right)={{\sec }^{2}}\theta $
Putting the value of the dt and t in the expression, we get:
$\Rightarrow \dfrac{1}{2}\int{\dfrac{\sqrt{{{\tan }^{2}}\theta +1}}{{{\tan }^{2}}\theta }}{{\sec }^{2}}\theta d\theta $
Using the identity ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ and ${\dfrac{1}{{\tan}^{2}\theta}={\cot}^{2}\theta}$ , we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\int{\dfrac{\sec \theta }{{{\tan }^{2}}\theta }\left( {{\tan }^{2}}\theta +1 \right)d\theta } \\
& \Rightarrow \dfrac{1}{2}\int{\sec \theta \left( \dfrac{{{\tan }^{2}}\theta +1}{{{\tan }^{2}}\theta } \right)d\theta } \\
& \Rightarrow \dfrac{1}{2}\int{\sec \theta \left( 1+{{\cot }^{2}}\theta \right)d\theta } \\
\end{align}$
On opening the inner brackets, we get simplified expression as:
$\Rightarrow \dfrac{1}{2}\left[ \int{\sec \theta d\theta +}\int{\cot \theta \csc \theta d\theta } \right]$
The above expression is obtained by using the property:
$\begin{align}
& \sec \theta \times {{\cot }^{2}}\theta =\dfrac{1}{\cos \theta }\times \dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \\
& \therefore \dfrac{\cos \theta }{{{\sin }^{2}}\theta }=\cot \theta \csc \theta \\
\end{align}$
Integrating the above expression, we get:
$\Rightarrow \dfrac{1}{2}\left[ \int{\sec \theta d\theta +}\int{\cot \theta \csc \theta d\theta } \right]$
Now, by using standard integration results:
$\begin{align}
& \int{\sec \theta =\ln \left| \sec \theta +\tan \theta \right|} \\
& \int{\cot \theta \csc \theta =\csc \theta } \\
\end{align}$
$\Rightarrow \dfrac{1}{2}\left[ \ln \left| \sec \theta +\tan \theta \right|-\csc \theta \right]+c$
Replacing the value $\sec \theta ,\tan \theta \text{ and }\csc \theta $ in terms of previous substitution of t, we get:
\[\begin{align}
& \text{As, t}=\tan \theta \\
& \sec \theta =\sqrt{1+{{t}^{2}}},\csc \theta =\dfrac{\sqrt{1+{{t}^{2}}}}{t} \\
& \Rightarrow \dfrac{1}{2}\left[ \ln \left| \sqrt{1+{{t}^{2}}}+t \right|-\dfrac{\sqrt{1+{{t}^{2}}}}{{{t}^{2}}} \right]+c \\
\end{align}\]
Now, replacing t with u, we get
\[\begin{align}
& \text{As, }t={{u}^{2}} \\
& \Rightarrow \dfrac{1}{2}\left[ \ln \left| \sqrt{1+{{u}^{4}}}+{{u}^{2}} \right|-\dfrac{\sqrt{1+{{u}^{4}}}}{{{u}^{2}}} \right]+c \\
\end{align}\]
Putting the value of u = tan x, we get:
\[\Rightarrow \dfrac{1}{2}\left[ \ln \left| \sqrt{1+{{\tan }^{4}}x}+{{\tan }^{2}}x \right|-\dfrac{\sqrt{1+{{\tan }^{4}}x}}{{{\tan }^{2}}x} \right]+c\]
The above expression is in terms of variables present in question and hence it is the final answer.
Note: Students must be careful while doing the substitution of one function to another. The corresponding multiplication factor in the differentiation should be accommodated in the same step to avoid errors. This question must be remembered by students due to three different substitution steps.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
