
Integrate the following:$\dfrac{\sqrt{{{\sin }^{4}}x+{{\cos }^{4}}x}}{{{\sin }^{3}}x\cos x}dx,x\in \left( 0,\dfrac{\pi }{2} \right)$
Answer
597k+ views
Hint: For solving this problem, first convert the whole quantity into tan function by using division. Now, substitute tan x to some other variable u. Again, substitute square of u to some other variable t. At last, substitute t as tan function of theta. Now, simplify all the variables and integrate using standard formulas.
Complete step-by-step answer:
First we have to convert whole quantity into tan function,
Dividing both the numerator and denominator by ${{\cos }^{2}}x$ and manipulating to convert whole quantity in tan, we get:
\[\begin{align}
& \Rightarrow \dfrac{\sqrt{\dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}+\dfrac{{{\cos }^{4}}x}{{{\cos }^{4}}x}}}{\dfrac{{{\sin }^{3}}x\cos x}{{{\cos }^{2}}x}} \\
& \Rightarrow \dfrac{\sqrt{{{\tan }^{4}}x+1}}{{{\tan }^{2}}x\dfrac{\sin x}{\cos x}{{\cos }^{2}}x}dx \\
& \Rightarrow \dfrac{\sqrt{{{\tan }^{4}}x+1}}{{{\tan }^{3}}x}{{\sec }^{2}}xdx \\
\end{align}\]
Let, u = tan x
Differentiation with respect to the x will give us:
$\begin{align}
& \dfrac{du}{dx}={{\sec }^{2}}x \\
& du={{\sec }^{2}}xdx \\
\end{align}$
As, $\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x$
Replacing with variables of u in the expression, we get:
$\int{\dfrac{\sqrt{{{u}^{4}}+1}}{{{u}^{3}}}}du$
Again, let ${{u}^{2}}=t$
Differentiation with respect to u gives us:
$\begin{align}
& 2u=\dfrac{dt}{du} \\
& 2udu=dt \\
& du=\dfrac{dt}{2u}=\dfrac{dt}{\sqrt{t}} \\
\end{align}$
As, $\dfrac{d}{du}\left( {{u}^{2}} \right)=2u$
Replacing the value of ${{u}^{2}}\text{ and }du$ in variables of t, we get:
$\begin{align}
& \Rightarrow \int{\dfrac{\sqrt{{{t}^{2}}+1}}{{{t}^{\dfrac{3}{2}}}}}\times \dfrac{1}{2\sqrt{t}}dt \\
& \Rightarrow \dfrac{1}{2}\int{\dfrac{\sqrt{{{t}^{2}}+1}}{{{t}^{2}}}}dt \\
\end{align}$
Finally, let $t=\tan \theta $
Differentiation with respect to the $\theta $ will give us:
$\begin{align}
& \dfrac{dt}{d\theta }={{\sec }^{2}}\theta \\
& \Rightarrow dt={{\sec }^{2}}\theta d\theta \\
\end{align}$
As, $\dfrac{d}{d\theta }\left( \tan \theta \right)={{\sec }^{2}}\theta $
Putting the value of the dt and t in the expression, we get:
$\Rightarrow \dfrac{1}{2}\int{\dfrac{\sqrt{{{\tan }^{2}}\theta +1}}{{{\tan }^{2}}\theta }}{{\sec }^{2}}\theta d\theta $
Using the identity ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ and ${\dfrac{1}{{\tan}^{2}\theta}={\cot}^{2}\theta}$ , we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\int{\dfrac{\sec \theta }{{{\tan }^{2}}\theta }\left( {{\tan }^{2}}\theta +1 \right)d\theta } \\
& \Rightarrow \dfrac{1}{2}\int{\sec \theta \left( \dfrac{{{\tan }^{2}}\theta +1}{{{\tan }^{2}}\theta } \right)d\theta } \\
& \Rightarrow \dfrac{1}{2}\int{\sec \theta \left( 1+{{\cot }^{2}}\theta \right)d\theta } \\
\end{align}$
On opening the inner brackets, we get simplified expression as:
$\Rightarrow \dfrac{1}{2}\left[ \int{\sec \theta d\theta +}\int{\cot \theta \csc \theta d\theta } \right]$
The above expression is obtained by using the property:
$\begin{align}
& \sec \theta \times {{\cot }^{2}}\theta =\dfrac{1}{\cos \theta }\times \dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \\
& \therefore \dfrac{\cos \theta }{{{\sin }^{2}}\theta }=\cot \theta \csc \theta \\
\end{align}$
Integrating the above expression, we get:
$\Rightarrow \dfrac{1}{2}\left[ \int{\sec \theta d\theta +}\int{\cot \theta \csc \theta d\theta } \right]$
Now, by using standard integration results:
$\begin{align}
& \int{\sec \theta =\ln \left| \sec \theta +\tan \theta \right|} \\
& \int{\cot \theta \csc \theta =\csc \theta } \\
\end{align}$
$\Rightarrow \dfrac{1}{2}\left[ \ln \left| \sec \theta +\tan \theta \right|-\csc \theta \right]+c$
Replacing the value $\sec \theta ,\tan \theta \text{ and }\csc \theta $ in terms of previous substitution of t, we get:
\[\begin{align}
& \text{As, t}=\tan \theta \\
& \sec \theta =\sqrt{1+{{t}^{2}}},\csc \theta =\dfrac{\sqrt{1+{{t}^{2}}}}{t} \\
& \Rightarrow \dfrac{1}{2}\left[ \ln \left| \sqrt{1+{{t}^{2}}}+t \right|-\dfrac{\sqrt{1+{{t}^{2}}}}{{{t}^{2}}} \right]+c \\
\end{align}\]
Now, replacing t with u, we get
\[\begin{align}
& \text{As, }t={{u}^{2}} \\
& \Rightarrow \dfrac{1}{2}\left[ \ln \left| \sqrt{1+{{u}^{4}}}+{{u}^{2}} \right|-\dfrac{\sqrt{1+{{u}^{4}}}}{{{u}^{2}}} \right]+c \\
\end{align}\]
Putting the value of u = tan x, we get:
\[\Rightarrow \dfrac{1}{2}\left[ \ln \left| \sqrt{1+{{\tan }^{4}}x}+{{\tan }^{2}}x \right|-\dfrac{\sqrt{1+{{\tan }^{4}}x}}{{{\tan }^{2}}x} \right]+c\]
The above expression is in terms of variables present in question and hence it is the final answer.
Note: Students must be careful while doing the substitution of one function to another. The corresponding multiplication factor in the differentiation should be accommodated in the same step to avoid errors. This question must be remembered by students due to three different substitution steps.
Complete step-by-step answer:
First we have to convert whole quantity into tan function,
Dividing both the numerator and denominator by ${{\cos }^{2}}x$ and manipulating to convert whole quantity in tan, we get:
\[\begin{align}
& \Rightarrow \dfrac{\sqrt{\dfrac{{{\sin }^{4}}x}{{{\cos }^{4}}x}+\dfrac{{{\cos }^{4}}x}{{{\cos }^{4}}x}}}{\dfrac{{{\sin }^{3}}x\cos x}{{{\cos }^{2}}x}} \\
& \Rightarrow \dfrac{\sqrt{{{\tan }^{4}}x+1}}{{{\tan }^{2}}x\dfrac{\sin x}{\cos x}{{\cos }^{2}}x}dx \\
& \Rightarrow \dfrac{\sqrt{{{\tan }^{4}}x+1}}{{{\tan }^{3}}x}{{\sec }^{2}}xdx \\
\end{align}\]
Let, u = tan x
Differentiation with respect to the x will give us:
$\begin{align}
& \dfrac{du}{dx}={{\sec }^{2}}x \\
& du={{\sec }^{2}}xdx \\
\end{align}$
As, $\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x$
Replacing with variables of u in the expression, we get:
$\int{\dfrac{\sqrt{{{u}^{4}}+1}}{{{u}^{3}}}}du$
Again, let ${{u}^{2}}=t$
Differentiation with respect to u gives us:
$\begin{align}
& 2u=\dfrac{dt}{du} \\
& 2udu=dt \\
& du=\dfrac{dt}{2u}=\dfrac{dt}{\sqrt{t}} \\
\end{align}$
As, $\dfrac{d}{du}\left( {{u}^{2}} \right)=2u$
Replacing the value of ${{u}^{2}}\text{ and }du$ in variables of t, we get:
$\begin{align}
& \Rightarrow \int{\dfrac{\sqrt{{{t}^{2}}+1}}{{{t}^{\dfrac{3}{2}}}}}\times \dfrac{1}{2\sqrt{t}}dt \\
& \Rightarrow \dfrac{1}{2}\int{\dfrac{\sqrt{{{t}^{2}}+1}}{{{t}^{2}}}}dt \\
\end{align}$
Finally, let $t=\tan \theta $
Differentiation with respect to the $\theta $ will give us:
$\begin{align}
& \dfrac{dt}{d\theta }={{\sec }^{2}}\theta \\
& \Rightarrow dt={{\sec }^{2}}\theta d\theta \\
\end{align}$
As, $\dfrac{d}{d\theta }\left( \tan \theta \right)={{\sec }^{2}}\theta $
Putting the value of the dt and t in the expression, we get:
$\Rightarrow \dfrac{1}{2}\int{\dfrac{\sqrt{{{\tan }^{2}}\theta +1}}{{{\tan }^{2}}\theta }}{{\sec }^{2}}\theta d\theta $
Using the identity ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ and ${\dfrac{1}{{\tan}^{2}\theta}={\cot}^{2}\theta}$ , we get:
$\begin{align}
& \Rightarrow \dfrac{1}{2}\int{\dfrac{\sec \theta }{{{\tan }^{2}}\theta }\left( {{\tan }^{2}}\theta +1 \right)d\theta } \\
& \Rightarrow \dfrac{1}{2}\int{\sec \theta \left( \dfrac{{{\tan }^{2}}\theta +1}{{{\tan }^{2}}\theta } \right)d\theta } \\
& \Rightarrow \dfrac{1}{2}\int{\sec \theta \left( 1+{{\cot }^{2}}\theta \right)d\theta } \\
\end{align}$
On opening the inner brackets, we get simplified expression as:
$\Rightarrow \dfrac{1}{2}\left[ \int{\sec \theta d\theta +}\int{\cot \theta \csc \theta d\theta } \right]$
The above expression is obtained by using the property:
$\begin{align}
& \sec \theta \times {{\cot }^{2}}\theta =\dfrac{1}{\cos \theta }\times \dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \\
& \therefore \dfrac{\cos \theta }{{{\sin }^{2}}\theta }=\cot \theta \csc \theta \\
\end{align}$
Integrating the above expression, we get:
$\Rightarrow \dfrac{1}{2}\left[ \int{\sec \theta d\theta +}\int{\cot \theta \csc \theta d\theta } \right]$
Now, by using standard integration results:
$\begin{align}
& \int{\sec \theta =\ln \left| \sec \theta +\tan \theta \right|} \\
& \int{\cot \theta \csc \theta =\csc \theta } \\
\end{align}$
$\Rightarrow \dfrac{1}{2}\left[ \ln \left| \sec \theta +\tan \theta \right|-\csc \theta \right]+c$
Replacing the value $\sec \theta ,\tan \theta \text{ and }\csc \theta $ in terms of previous substitution of t, we get:
\[\begin{align}
& \text{As, t}=\tan \theta \\
& \sec \theta =\sqrt{1+{{t}^{2}}},\csc \theta =\dfrac{\sqrt{1+{{t}^{2}}}}{t} \\
& \Rightarrow \dfrac{1}{2}\left[ \ln \left| \sqrt{1+{{t}^{2}}}+t \right|-\dfrac{\sqrt{1+{{t}^{2}}}}{{{t}^{2}}} \right]+c \\
\end{align}\]
Now, replacing t with u, we get
\[\begin{align}
& \text{As, }t={{u}^{2}} \\
& \Rightarrow \dfrac{1}{2}\left[ \ln \left| \sqrt{1+{{u}^{4}}}+{{u}^{2}} \right|-\dfrac{\sqrt{1+{{u}^{4}}}}{{{u}^{2}}} \right]+c \\
\end{align}\]
Putting the value of u = tan x, we get:
\[\Rightarrow \dfrac{1}{2}\left[ \ln \left| \sqrt{1+{{\tan }^{4}}x}+{{\tan }^{2}}x \right|-\dfrac{\sqrt{1+{{\tan }^{4}}x}}{{{\tan }^{2}}x} \right]+c\]
The above expression is in terms of variables present in question and hence it is the final answer.
Note: Students must be careful while doing the substitution of one function to another. The corresponding multiplication factor in the differentiation should be accommodated in the same step to avoid errors. This question must be remembered by students due to three different substitution steps.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

