
Integrate the following question.
$\int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\left( {\sqrt {x - {x^2}} } \right)}}{\text{ is equal to}}} $
$
{\text{A}}{\text{. }}\dfrac{{1 + \sqrt x }}{{{{\left( {1 - x} \right)}^2}}} + c \\
{\text{B}}{\text{. }}\dfrac{{1 + \sqrt x }}{{{{\left( {1 + x} \right)}^2}}} + c \\
{\text{C}}{\text{. }}\dfrac{{1 - \sqrt x }}{{{{\left( {1 - x} \right)}^2}}} + c \\
{\text{D}}{\text{. }}\dfrac{{2\left( {\sqrt x - 1} \right)}}{{\sqrt {1 - x} }} + c \\
$
Answer
618.6k+ views
Hint: When you see this type of question it seems very complex so to make it easy use the substitution method put \[\sqrt x = \sin \theta \] and solve further as a simple integration question.
Complete step-by-step solution -
$\because \sqrt x = \sin \theta $
On differentiating we get
$ \Rightarrow \dfrac{1}{{2\sqrt x }}dx = \cos \theta d\theta $
$ \Rightarrow dx = 2\sqrt x \cos \theta d\theta $$\left( {\because \sqrt x = \sin \theta } \right)$
$ \Rightarrow dx = 2\sin \theta \cos \theta d\theta $
We have to find
$\int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\left( {\sqrt {x - {x^2}} } \right)}}} $
$\left( {\because \sqrt x = \sin \theta ,\therefore x = {{\sin }^2}\theta } \right)$
$\left( {\sqrt {x - {x^2}} = \sqrt {x\left( {1 - x} \right)} = \sqrt {{{\sin }^2}\theta \left( {1 - {{\sin }^2}\theta } \right)} = \sin \theta .\cos \theta } \right)$
On putting the values of dx and $\sqrt x $ we get
$ \Rightarrow \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sin \theta .\cos \theta }}} = 2\int {\dfrac{{d\theta }}{{\left( {1 + \sin \theta } \right)}}} $
On multiplying by $\left( {1 - \sin \theta } \right)$on numerator and denominator both we get
$ \Rightarrow 2\int {\dfrac{{\left( {1 - \sin \theta } \right)}}{{\left( {1 - {{\sin }^2}\theta } \right)}}d\theta = 2\int {\dfrac{{1 - \sin \theta }}{{{{\cos }^2}\theta }}d\theta } } $$\left( {\because 1 - {{\sin }^2}\theta = {{\cos }^2}\theta } \right)$
$ \Rightarrow \left\{ {\int {{{\sec }^2}\theta d\theta - \int {\left( {\tan \theta .\sec \theta } \right)d\theta } } } \right\}$$\left( {\because \dfrac{1}{{{{\cos }^2}\theta }} = {{\sec }^2}\theta } \right)$
$ \Rightarrow 2\left( {\tan \theta - \sec \theta } \right) + c$ $\left( {\because \int {{{\sec }^2}\theta d\theta = \tan \theta } } \right)\left( {\because \int {\sec \theta .\tan \theta d\theta = \tan \theta } } \right)$
$ = 2\left( {\sqrt {\dfrac{x}{{1 - x}}} - \dfrac{1}{{\sqrt {1 - x} }}} \right) + c$$\left( {\because \sin x = \sqrt x ,\therefore \tan x = \dfrac{{\sqrt x }}{{\sqrt {1 - x} }},\therefore \sec x = \dfrac{1}{{\sqrt {1 - x} }}} \right)$
=$\dfrac{{2\left( {\sqrt x - 1} \right)}}{{\sqrt {1 - x} }} + c$
Hence option D is the correct option.
Note: These are some special types of questions which are easily solved by substitution method. If you solve it by usual method it will go very long or it will not be solved. So proceed from the substitution method and use simple integration and simple trigonometric results to get an answer.
Complete step-by-step solution -
$\because \sqrt x = \sin \theta $
On differentiating we get
$ \Rightarrow \dfrac{1}{{2\sqrt x }}dx = \cos \theta d\theta $
$ \Rightarrow dx = 2\sqrt x \cos \theta d\theta $$\left( {\because \sqrt x = \sin \theta } \right)$
$ \Rightarrow dx = 2\sin \theta \cos \theta d\theta $
We have to find
$\int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\left( {\sqrt {x - {x^2}} } \right)}}} $
$\left( {\because \sqrt x = \sin \theta ,\therefore x = {{\sin }^2}\theta } \right)$
$\left( {\sqrt {x - {x^2}} = \sqrt {x\left( {1 - x} \right)} = \sqrt {{{\sin }^2}\theta \left( {1 - {{\sin }^2}\theta } \right)} = \sin \theta .\cos \theta } \right)$
On putting the values of dx and $\sqrt x $ we get
$ \Rightarrow \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sin \theta .\cos \theta }}} = 2\int {\dfrac{{d\theta }}{{\left( {1 + \sin \theta } \right)}}} $
On multiplying by $\left( {1 - \sin \theta } \right)$on numerator and denominator both we get
$ \Rightarrow 2\int {\dfrac{{\left( {1 - \sin \theta } \right)}}{{\left( {1 - {{\sin }^2}\theta } \right)}}d\theta = 2\int {\dfrac{{1 - \sin \theta }}{{{{\cos }^2}\theta }}d\theta } } $$\left( {\because 1 - {{\sin }^2}\theta = {{\cos }^2}\theta } \right)$
$ \Rightarrow \left\{ {\int {{{\sec }^2}\theta d\theta - \int {\left( {\tan \theta .\sec \theta } \right)d\theta } } } \right\}$$\left( {\because \dfrac{1}{{{{\cos }^2}\theta }} = {{\sec }^2}\theta } \right)$
$ \Rightarrow 2\left( {\tan \theta - \sec \theta } \right) + c$ $\left( {\because \int {{{\sec }^2}\theta d\theta = \tan \theta } } \right)\left( {\because \int {\sec \theta .\tan \theta d\theta = \tan \theta } } \right)$
$ = 2\left( {\sqrt {\dfrac{x}{{1 - x}}} - \dfrac{1}{{\sqrt {1 - x} }}} \right) + c$$\left( {\because \sin x = \sqrt x ,\therefore \tan x = \dfrac{{\sqrt x }}{{\sqrt {1 - x} }},\therefore \sec x = \dfrac{1}{{\sqrt {1 - x} }}} \right)$
=$\dfrac{{2\left( {\sqrt x - 1} \right)}}{{\sqrt {1 - x} }} + c$
Hence option D is the correct option.
Note: These are some special types of questions which are easily solved by substitution method. If you solve it by usual method it will go very long or it will not be solved. So proceed from the substitution method and use simple integration and simple trigonometric results to get an answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

