
Integrate the following function: \[x\sin 3x\]
Answer
567.6k+ views
Hint: Here we will be proceeding by letting the given function as \[h\left( x \right)\]. Then use integration by parts methods by knowing its first function and second function by using the ILATE rule. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Let the given function be \[h\left( x \right) = x\sin 3x\]
This function can be integrated by using the method of integration by parts.
By ILATE rule we take \[x\] as the first function (algebraic function) and \[\sin 3x\] (trigonometric function) as second function for integration by parts.
We know that \[\int {f\left( x \right)} g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)dx} - \int {f'\left( x \right)} \int {g\left( x \right)dx} + c\] where \[f\left( x \right)\] is first function and \[g\left( x \right)\] is second function in integrating by parts.
Applying integrating by parts to the function \[h\left( x \right)\], we have
\[
\Rightarrow \int {h\left( x \right) = \int {\left( x \right)\left( {\sin 3x} \right)dx} } \\
\Rightarrow \int {h\left( x \right)} = x\int {\left( {\sin 3x} \right)dx} - \int {x'\int {\left( {\sin 3x} \right)dx} } \\
\]
By using the formula, \[\int {\sin axdx} = \dfrac{{ - \cos ax}}{a} + c\] we have
\[
\Rightarrow \int {h\left( x \right)} = \left( x \right)\left( {\dfrac{{ - \cos 3x}}{3}} \right) - \int {\left( 1 \right)\left( {\dfrac{{ - \cos 3x}}{3}} \right)dx} \\
\Rightarrow \int {h\left( x \right)} = \dfrac{{ - x\cos 3x}}{3} - \int {\dfrac{{ - \cos 3x}}{3}dx} \\
\Rightarrow \int {h\left( x \right)} = \dfrac{{ - x\cos 3x}}{3} + \dfrac{1}{3}\int {\cos 3xdx} \\
\]
By using the formula, \[\int {\cos ax} = \dfrac{{\sin ax}}{a} + c\] we have
\[
\Rightarrow \int {h\left( x \right)} = \dfrac{{ - x\cos 3x}}{3} + \dfrac{1}{3}\left( {\dfrac{{\sin 3x}}{3}} \right) + c \\
\Rightarrow \int {h\left( x \right)} = \dfrac{{ - x\cos 3x}}{3} + \dfrac{{\sin 3x}}{9} + c \\
\therefore \int {x\sin 3x} = \dfrac{{ - x\cos 3x}}{3} + \dfrac{{\sin 3x}}{9} + c \\
\]
Thus, the integral of \[x\sin 3x\] is \[\dfrac{{ - x\cos 3x}}{3} + \dfrac{{\sin 3x}}{9} + c\].
Note: A constant namely integrating constant that is added to the function obtained by evaluating the indefinite integral of a given function, indicating that all indefinite integrals of the given function differ by, at most, a constant. So, it is necessary to add integrating constants after completion of the integral.
Complete step-by-step answer:
Let the given function be \[h\left( x \right) = x\sin 3x\]
This function can be integrated by using the method of integration by parts.
By ILATE rule we take \[x\] as the first function (algebraic function) and \[\sin 3x\] (trigonometric function) as second function for integration by parts.
We know that \[\int {f\left( x \right)} g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)dx} - \int {f'\left( x \right)} \int {g\left( x \right)dx} + c\] where \[f\left( x \right)\] is first function and \[g\left( x \right)\] is second function in integrating by parts.
Applying integrating by parts to the function \[h\left( x \right)\], we have
\[
\Rightarrow \int {h\left( x \right) = \int {\left( x \right)\left( {\sin 3x} \right)dx} } \\
\Rightarrow \int {h\left( x \right)} = x\int {\left( {\sin 3x} \right)dx} - \int {x'\int {\left( {\sin 3x} \right)dx} } \\
\]
By using the formula, \[\int {\sin axdx} = \dfrac{{ - \cos ax}}{a} + c\] we have
\[
\Rightarrow \int {h\left( x \right)} = \left( x \right)\left( {\dfrac{{ - \cos 3x}}{3}} \right) - \int {\left( 1 \right)\left( {\dfrac{{ - \cos 3x}}{3}} \right)dx} \\
\Rightarrow \int {h\left( x \right)} = \dfrac{{ - x\cos 3x}}{3} - \int {\dfrac{{ - \cos 3x}}{3}dx} \\
\Rightarrow \int {h\left( x \right)} = \dfrac{{ - x\cos 3x}}{3} + \dfrac{1}{3}\int {\cos 3xdx} \\
\]
By using the formula, \[\int {\cos ax} = \dfrac{{\sin ax}}{a} + c\] we have
\[
\Rightarrow \int {h\left( x \right)} = \dfrac{{ - x\cos 3x}}{3} + \dfrac{1}{3}\left( {\dfrac{{\sin 3x}}{3}} \right) + c \\
\Rightarrow \int {h\left( x \right)} = \dfrac{{ - x\cos 3x}}{3} + \dfrac{{\sin 3x}}{9} + c \\
\therefore \int {x\sin 3x} = \dfrac{{ - x\cos 3x}}{3} + \dfrac{{\sin 3x}}{9} + c \\
\]
Thus, the integral of \[x\sin 3x\] is \[\dfrac{{ - x\cos 3x}}{3} + \dfrac{{\sin 3x}}{9} + c\].
Note: A constant namely integrating constant that is added to the function obtained by evaluating the indefinite integral of a given function, indicating that all indefinite integrals of the given function differ by, at most, a constant. So, it is necessary to add integrating constants after completion of the integral.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

