
Integrate the following function
\[\dfrac{1}{\sqrt{{{\sin }^{3}}x\sin \left( x+\alpha \right)}}\]
Answer
576k+ views
Hint: First we will expand \[\sin \left( x+\alpha \right)\] using the identity \[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B.\] Then we will take sin x common and multiply it with \[{{\sin }^{3}}x.\] Then we will use the conversion \[\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta ,\dfrac{\cos \theta }{\sin \theta }=\cot \theta \] to simplify the function. Now, we will assume cot x = k and differentiate both the sides to find dx in terms of dk. Finally, we will convert the integral in the form \[\int{\dfrac{dx}{\sqrt{ax+b}}}\] whose solution is \[\dfrac{1}{a}\times 2\sqrt{ax+b}.\] Use the formula: \[\dfrac{d\cot \theta }{d\theta }=-{{\operatorname{cosec}}^{2}}\theta .\]
Complete step-by-step solution:
Here, we have to find the value of the integral of the function given as \[\dfrac{1}{\sqrt{{{\sin }^{3}}x\sin \left( x+\alpha \right)}}.\] Let us assume this integral as I. Therefore, we have,
\[I=\int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\sin \left( x+\alpha \right)}}}dx\]
Applying the identity: \[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B,\] we get,
\[\Rightarrow I=\int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\left( \sin x\cos \alpha +\cos x\sin \alpha \right)}}}dx\]
\[\Rightarrow I=\int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\times \sin x\left( 1\times \cos \alpha +\dfrac{\cos x}{\sin x}\times \sin \alpha \right)}}}dx\]
\[\Rightarrow I=\int{\dfrac{1}{\sqrt{{{\sin }^{4}}x\left( \cos \alpha +\dfrac{\cos x}{\sin x}\sin \alpha \right)}}}dx\]
\[\Rightarrow I=\int{\dfrac{1}{{{\sin }^{2}}x\sqrt{\left( \cos \alpha +\dfrac{\cos x}{\sin x}\sin \alpha \right)}}}dx\]
Now, using the conversion \[\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta ,\dfrac{\cos \theta }{\sin \theta }=\cot \theta ,\] we get,
\[\Rightarrow I=\int{\dfrac{{{\operatorname{cosec}}^{2}}x}{\sqrt{\cos \alpha +\cot x\sin \alpha }}dx}\]
Now, let us assume cot x = k, therefore differentiating both the sides, we get,
\[\dfrac{d\cot x}{dx}=\dfrac{dk}{dx}\]
\[\Rightarrow -{{\operatorname{cosec}}^{2}}x=\dfrac{dk}{dx}\]
\[\Rightarrow dk=-{{\operatorname{cosec}}^{2}}xdx\]
\[\Rightarrow {{\operatorname{cosec}}^{2}}xdx=-dk\]
Substituting the above value in the numerator of the function inside the integral, we get,
\[\Rightarrow I=\int{\dfrac{-dk}{\sqrt{\cos \alpha +k\sin \alpha }}}\]
\[\Rightarrow I=-\int{\dfrac{dk}{\sqrt{k\sin \alpha +\cos \alpha }}......\left( i \right)}\]
As we know that here \[\sin \alpha \] and \[\cos \alpha \] are constants, so the above integral is of the form \[\int{\dfrac{dx}{\sqrt{ax+b}}}\] whose solution is \[\dfrac{2}{a}\sqrt{ax+b},\] where a is the coefficient of x. So, the value of the integral given by equation (i) will be
\[I=\dfrac{-2}{\sin \alpha }\sqrt{k\sin \alpha +\cos \alpha }+c\]
where ‘c’ is the constant of the integration.
Substituting k = cot x, we get,
\[\Rightarrow I=\dfrac{-2}{\sin \alpha }\sqrt{\cot x\sin \alpha +\cos \alpha }+c\]
Hence, the above expression of I is our required answer.
Note: One may note that without using the expansion formula of sin (A + B) and the conversions of \[\dfrac{1}{\sin \theta }\] and \[\dfrac{\cos \theta }{\sin \theta },\] we will not be able to solve the question. Also, note that we have taken sin x common from the expression \[\left( \sin x\cos \alpha +\cos x\sin \alpha \right)\] and multiplied it with \[{{\sin }^{3}}x.\] Here, we do not have to take cos x common as it will not give any simplified form. One must remember some basic integral formulas so that when the expression is simplified, its integral can be found easily.
Complete step-by-step solution:
Here, we have to find the value of the integral of the function given as \[\dfrac{1}{\sqrt{{{\sin }^{3}}x\sin \left( x+\alpha \right)}}.\] Let us assume this integral as I. Therefore, we have,
\[I=\int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\sin \left( x+\alpha \right)}}}dx\]
Applying the identity: \[\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B,\] we get,
\[\Rightarrow I=\int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\left( \sin x\cos \alpha +\cos x\sin \alpha \right)}}}dx\]
\[\Rightarrow I=\int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\times \sin x\left( 1\times \cos \alpha +\dfrac{\cos x}{\sin x}\times \sin \alpha \right)}}}dx\]
\[\Rightarrow I=\int{\dfrac{1}{\sqrt{{{\sin }^{4}}x\left( \cos \alpha +\dfrac{\cos x}{\sin x}\sin \alpha \right)}}}dx\]
\[\Rightarrow I=\int{\dfrac{1}{{{\sin }^{2}}x\sqrt{\left( \cos \alpha +\dfrac{\cos x}{\sin x}\sin \alpha \right)}}}dx\]
Now, using the conversion \[\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta ,\dfrac{\cos \theta }{\sin \theta }=\cot \theta ,\] we get,
\[\Rightarrow I=\int{\dfrac{{{\operatorname{cosec}}^{2}}x}{\sqrt{\cos \alpha +\cot x\sin \alpha }}dx}\]
Now, let us assume cot x = k, therefore differentiating both the sides, we get,
\[\dfrac{d\cot x}{dx}=\dfrac{dk}{dx}\]
\[\Rightarrow -{{\operatorname{cosec}}^{2}}x=\dfrac{dk}{dx}\]
\[\Rightarrow dk=-{{\operatorname{cosec}}^{2}}xdx\]
\[\Rightarrow {{\operatorname{cosec}}^{2}}xdx=-dk\]
Substituting the above value in the numerator of the function inside the integral, we get,
\[\Rightarrow I=\int{\dfrac{-dk}{\sqrt{\cos \alpha +k\sin \alpha }}}\]
\[\Rightarrow I=-\int{\dfrac{dk}{\sqrt{k\sin \alpha +\cos \alpha }}......\left( i \right)}\]
As we know that here \[\sin \alpha \] and \[\cos \alpha \] are constants, so the above integral is of the form \[\int{\dfrac{dx}{\sqrt{ax+b}}}\] whose solution is \[\dfrac{2}{a}\sqrt{ax+b},\] where a is the coefficient of x. So, the value of the integral given by equation (i) will be
\[I=\dfrac{-2}{\sin \alpha }\sqrt{k\sin \alpha +\cos \alpha }+c\]
where ‘c’ is the constant of the integration.
Substituting k = cot x, we get,
\[\Rightarrow I=\dfrac{-2}{\sin \alpha }\sqrt{\cot x\sin \alpha +\cos \alpha }+c\]
Hence, the above expression of I is our required answer.
Note: One may note that without using the expansion formula of sin (A + B) and the conversions of \[\dfrac{1}{\sin \theta }\] and \[\dfrac{\cos \theta }{\sin \theta },\] we will not be able to solve the question. Also, note that we have taken sin x common from the expression \[\left( \sin x\cos \alpha +\cos x\sin \alpha \right)\] and multiplied it with \[{{\sin }^{3}}x.\] Here, we do not have to take cos x common as it will not give any simplified form. One must remember some basic integral formulas so that when the expression is simplified, its integral can be found easily.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

