
Integrate the following expression \[\int {\dfrac{{dx}}{{x - {x^3}}}} \].
A) $\dfrac{1}{2}\log \left| {\dfrac{{1 - {x^2}}}{{{x^2}}}} \right| + C$
B) $\log \left| {\dfrac{{1 - x}}{{x(1 + x)}}} \right| + C$
C) $\log \left| {x - {x^3}} \right| + C$
D) $\dfrac{1}{2}\log \left| {\dfrac{{{x^2}}}{{1 - {x^2}}}} \right| + C$
Answer
507.6k+ views
Hint: We can solve this integral using the method of partial fraction. All we need is to split into simplest fractions so that we can integrate directly. Then applying some logarithmic formulas, we get the answer.
Formula used: For every $x,y$, we have, ${x^2} - {y^2} = (x - y)(x + y)$
For every function $f(x)$, $\int {\dfrac{1}{{f(x)}}} dx = \log (f(x))\dfrac{{df(x)}}{{dx}} + C$, where $C$ is the constant of integration.
Also, $\log {x^2} = 2\log x,\log (A + B) = \log A\log B,\log (A - B) = \dfrac{{\log A}}{{\log B}}$, for every function $A,B$.
Complete step-by-step answer:
The given function is $\dfrac{1}{{x - {x^3}}}$.
Taking $x$ common from the denominator we have,
$ \Rightarrow \dfrac{1}{{x - {x^3}}} = \dfrac{1}{{x(1 - {x^2})}}$
For every $x,y$, we have, ${x^2} - {y^2} = (x - y)(x + y)$
Applying this result,
$ \Rightarrow \dfrac{1}{{x - {x^3}}} = \dfrac{1}{{x(1 - {x^2})}} = \dfrac{1}{{x(1 - x)(1 + x)}} - - - (i)$
Suppose there exists $A,B,C$ such that
$ \Rightarrow \dfrac{1}{{x(1 - x)(1 + x)}} = \dfrac{A}{x} + \dfrac{B}{{1 - x}} + \dfrac{C}{{1 + x}} - - - (ii)$
Taking LCM on Right hand side and rearranging we have,
$ \Rightarrow \dfrac{1}{{x(1 - x)(1 + x)}} = \dfrac{{A(1 - x)(1 + x) + Bx(1 + x) + Cx(1 - x)}}{{x(1 - x)(1 + x)}}$
Comparing the sides of the above equation, we have,
$ \Rightarrow 1 = A(1 - x)(1 + x) + Bx(1 + x) + Cx(1 - x)$
Simplifying we get,
$ \Rightarrow 1 = A(1 - {x^2}) + B(x + {x^2}) + C(x - {x^2})$
Splitting into terms of $x,{x^2}$ and constant,
$ \Rightarrow 1 + 0x + 0{x^2} = A + ( - A + B - C){x^2} + (B + C)x$
Comparing both sides of the above equation we have,
$ \Rightarrow A = 1, - A + B - C = 0,B + C = 0$
Substituting we get,
$ - 1 + B - C = 0 \Rightarrow B - C = 1$
$B + C = 0 \Rightarrow B = - C$
Again, substituting we get,
$B + B = 1 \Rightarrow 2B = 1 \Rightarrow B = \dfrac{1}{2}$
Since $B = \dfrac{1}{2},B = - C \Rightarrow C = - \dfrac{1}{2}$
So, we have, $A = 1,B = \dfrac{1}{2},C = - \dfrac{1}{2}$
Substituting for $A,B,C$ in equation $(ii)$,
$ \Rightarrow \dfrac{1}{{x(1 - x)(1 + x)}} = \dfrac{A}{x} + \dfrac{B}{{1 - x}} + \dfrac{C}{{1 + x}} = \dfrac{1}{x} + \dfrac{1}{{2(1 - x)}} - \dfrac{1}{{2(1 + x)}} - - (iii)$
We have to find $\int {\dfrac{1}{{x - {x^3}}}} dx$
From $(i),(iii)$ we have,
$\int {\dfrac{{dx}}{{x - {x^3}}}} = \int {[\dfrac{1}{x} + \dfrac{1}{2}\dfrac{1}{{(1 - x)}}} - \dfrac{1}{2}\dfrac{1}{{(1 + x)}}]dx$
$ \Rightarrow \int {\dfrac{{dx}}{{x - {x^3}}}} = \int {\dfrac{1}{x}dx + \int {} \dfrac{1}{2}\dfrac{1}{{(1 - x)}}} dx - \int {} \dfrac{1}{2}\dfrac{1}{{(1 + x)}}dx$
For every function $f(x)$, $\int {\dfrac{1}{{f(x)}}} dx = \log (f(x))\dfrac{{df(x)}}{{dx}} + C$, where $C$ is the constant of integration.
Here letting $f(x)$ as $1 - x,1 + x$, we have,
$\int {\dfrac{{dx}}{{x - {x^3}}}} = \log x - \dfrac{1}{2}\log (1 - x) - \dfrac{1}{2}\log (1 + x) + C$, where $C$ is the constant of integration.
$ \Rightarrow \int {\dfrac{{dx}}{{x - {x^3}}}} = \log x - \dfrac{1}{2}[\log (1 - x) + \log (1 + x)] + C$
We know $\log {x^2} = 2\log x,\log (A + B) = \log A\log B,\log (A - B) = \dfrac{{\log A}}{{\log B}}$
$ \Rightarrow \int {\dfrac{{dx}}{{x - {x^3}}}} = \dfrac{1}{2}\log {x^2} - \dfrac{1}{2}[\log (1 - x)(1 + x)] + C$
Since $(1 - x)(1 + x) = 1 - {x^2}$and simplifying,
$ \Rightarrow \int {\dfrac{{dx}}{{x - {x^3}}}} = \dfrac{1}{2}[\log {x^2} - \log (1 - {x^2})] + C$
Applying the result $\log A - \log B = \log \dfrac{A}{B}$, in the above equation,
$ \Rightarrow \int {\dfrac{{dx}}{{x - {x^3}}}} = \dfrac{1}{2}\log \dfrac{{{x^2}}}{{1 - {x^2}}} + C$, where $C$ is the constant of integration.
The answer is $\dfrac{1}{2}\log \left| {\dfrac{{{x^2}}}{{1 - {x^2}}}} \right| + C$.
So, the correct answer is “Option D”.
Note:We must be careful while applying the results of integration and logarithm. This question may be solved in other ways instead of partial fraction. Since the integral used here is the indefinite one it is mandatory to add the constant of integration.Students should remember the formulas of integration , differentiation and logarithmic properties for solving these types of problems and also should know the method of solving integration by partial fraction method.
Formula used: For every $x,y$, we have, ${x^2} - {y^2} = (x - y)(x + y)$
For every function $f(x)$, $\int {\dfrac{1}{{f(x)}}} dx = \log (f(x))\dfrac{{df(x)}}{{dx}} + C$, where $C$ is the constant of integration.
Also, $\log {x^2} = 2\log x,\log (A + B) = \log A\log B,\log (A - B) = \dfrac{{\log A}}{{\log B}}$, for every function $A,B$.
Complete step-by-step answer:
The given function is $\dfrac{1}{{x - {x^3}}}$.
Taking $x$ common from the denominator we have,
$ \Rightarrow \dfrac{1}{{x - {x^3}}} = \dfrac{1}{{x(1 - {x^2})}}$
For every $x,y$, we have, ${x^2} - {y^2} = (x - y)(x + y)$
Applying this result,
$ \Rightarrow \dfrac{1}{{x - {x^3}}} = \dfrac{1}{{x(1 - {x^2})}} = \dfrac{1}{{x(1 - x)(1 + x)}} - - - (i)$
Suppose there exists $A,B,C$ such that
$ \Rightarrow \dfrac{1}{{x(1 - x)(1 + x)}} = \dfrac{A}{x} + \dfrac{B}{{1 - x}} + \dfrac{C}{{1 + x}} - - - (ii)$
Taking LCM on Right hand side and rearranging we have,
$ \Rightarrow \dfrac{1}{{x(1 - x)(1 + x)}} = \dfrac{{A(1 - x)(1 + x) + Bx(1 + x) + Cx(1 - x)}}{{x(1 - x)(1 + x)}}$
Comparing the sides of the above equation, we have,
$ \Rightarrow 1 = A(1 - x)(1 + x) + Bx(1 + x) + Cx(1 - x)$
Simplifying we get,
$ \Rightarrow 1 = A(1 - {x^2}) + B(x + {x^2}) + C(x - {x^2})$
Splitting into terms of $x,{x^2}$ and constant,
$ \Rightarrow 1 + 0x + 0{x^2} = A + ( - A + B - C){x^2} + (B + C)x$
Comparing both sides of the above equation we have,
$ \Rightarrow A = 1, - A + B - C = 0,B + C = 0$
Substituting we get,
$ - 1 + B - C = 0 \Rightarrow B - C = 1$
$B + C = 0 \Rightarrow B = - C$
Again, substituting we get,
$B + B = 1 \Rightarrow 2B = 1 \Rightarrow B = \dfrac{1}{2}$
Since $B = \dfrac{1}{2},B = - C \Rightarrow C = - \dfrac{1}{2}$
So, we have, $A = 1,B = \dfrac{1}{2},C = - \dfrac{1}{2}$
Substituting for $A,B,C$ in equation $(ii)$,
$ \Rightarrow \dfrac{1}{{x(1 - x)(1 + x)}} = \dfrac{A}{x} + \dfrac{B}{{1 - x}} + \dfrac{C}{{1 + x}} = \dfrac{1}{x} + \dfrac{1}{{2(1 - x)}} - \dfrac{1}{{2(1 + x)}} - - (iii)$
We have to find $\int {\dfrac{1}{{x - {x^3}}}} dx$
From $(i),(iii)$ we have,
$\int {\dfrac{{dx}}{{x - {x^3}}}} = \int {[\dfrac{1}{x} + \dfrac{1}{2}\dfrac{1}{{(1 - x)}}} - \dfrac{1}{2}\dfrac{1}{{(1 + x)}}]dx$
$ \Rightarrow \int {\dfrac{{dx}}{{x - {x^3}}}} = \int {\dfrac{1}{x}dx + \int {} \dfrac{1}{2}\dfrac{1}{{(1 - x)}}} dx - \int {} \dfrac{1}{2}\dfrac{1}{{(1 + x)}}dx$
For every function $f(x)$, $\int {\dfrac{1}{{f(x)}}} dx = \log (f(x))\dfrac{{df(x)}}{{dx}} + C$, where $C$ is the constant of integration.
Here letting $f(x)$ as $1 - x,1 + x$, we have,
$\int {\dfrac{{dx}}{{x - {x^3}}}} = \log x - \dfrac{1}{2}\log (1 - x) - \dfrac{1}{2}\log (1 + x) + C$, where $C$ is the constant of integration.
$ \Rightarrow \int {\dfrac{{dx}}{{x - {x^3}}}} = \log x - \dfrac{1}{2}[\log (1 - x) + \log (1 + x)] + C$
We know $\log {x^2} = 2\log x,\log (A + B) = \log A\log B,\log (A - B) = \dfrac{{\log A}}{{\log B}}$
$ \Rightarrow \int {\dfrac{{dx}}{{x - {x^3}}}} = \dfrac{1}{2}\log {x^2} - \dfrac{1}{2}[\log (1 - x)(1 + x)] + C$
Since $(1 - x)(1 + x) = 1 - {x^2}$and simplifying,
$ \Rightarrow \int {\dfrac{{dx}}{{x - {x^3}}}} = \dfrac{1}{2}[\log {x^2} - \log (1 - {x^2})] + C$
Applying the result $\log A - \log B = \log \dfrac{A}{B}$, in the above equation,
$ \Rightarrow \int {\dfrac{{dx}}{{x - {x^3}}}} = \dfrac{1}{2}\log \dfrac{{{x^2}}}{{1 - {x^2}}} + C$, where $C$ is the constant of integration.
The answer is $\dfrac{1}{2}\log \left| {\dfrac{{{x^2}}}{{1 - {x^2}}}} \right| + C$.
So, the correct answer is “Option D”.
Note:We must be careful while applying the results of integration and logarithm. This question may be solved in other ways instead of partial fraction. Since the integral used here is the indefinite one it is mandatory to add the constant of integration.Students should remember the formulas of integration , differentiation and logarithmic properties for solving these types of problems and also should know the method of solving integration by partial fraction method.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Selling price of a toy is Rs540 If the profit made class 7 maths CBSE

Find two equivalent fractions of dfrac35 class 7 maths CBSE

The scientific notation of 35000000 is A 35 times 107 class 7 maths CBSE

How do I convert 101 degrees Fahrenheit into degrees class 7 maths CBSE

If one apple is 20 rupees then how many apples will class 7 maths CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
