
Integrate sin3x.cos4x
Answer
600.9k+ views
Hint- To integrate some mathematical functions like sin3x.cos4x , we first need to change the multiplication sign between them using the trigonometric formula of $\sin a.\cos b = \dfrac{1}{2}\left( {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right)$ and then integrate them separately using integration formulas and put a constant at the end to get the required solution.
Complete step by step answer:
We know that
Sin(a+b) = sina.cosb + cosa.sinb
Sin(a-b) = sina.cosb - cosa.sinb
On adding both the equations , we get
Sin(a+b) + sin(a-b)= 2sina.cosb
$ \Rightarrow \sin a.\cos b = \dfrac{1}{2}\left( {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right)$
Therefore ,
sin3x.cos4x = $\dfrac{1}{2}\left( {\sin \left( {3x + 4x} \right) + \sin \left( {3x - 4x} \right)} \right)$
$\Rightarrow sin3x.cos4x = \dfrac{1}{2}\left( {\sin 7x - \sin x} \right){\text{ }}\left( {{\text{since sin}}\left( { - \theta } \right) = - \sin \theta } \right){\text{ }}$
Now integrating the above ,
$ \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{1}{2}\left[ {\int {\sin 7xdx} - \int {\sin xdx} } \right]$
$\Rightarrow \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{1}{2}\left[ { - \dfrac{{\cos 7x}}{7} + \cos x} \right] + C{\text{ }}\left( {\operatorname{si} {\text{nce }}\int {\sin \left( {ax + b} \right)dx = - \dfrac{{\cos \left( {ax + b} \right)}}{a}} {\text{ }}} \right)$
$\Rightarrow \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{{ - 1}}{{14}}\cos 7x + \dfrac{1}{2}\cos x + C$
Note - In order to include all antiderivatives of f(x) the constant of integration C is used for indefinite integrals. The importance of C is that it allows us to express the general form of antiderivatives.
Complete step by step answer:
We know that
Sin(a+b) = sina.cosb + cosa.sinb
Sin(a-b) = sina.cosb - cosa.sinb
On adding both the equations , we get
Sin(a+b) + sin(a-b)= 2sina.cosb
$ \Rightarrow \sin a.\cos b = \dfrac{1}{2}\left( {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right)$
Therefore ,
sin3x.cos4x = $\dfrac{1}{2}\left( {\sin \left( {3x + 4x} \right) + \sin \left( {3x - 4x} \right)} \right)$
$\Rightarrow sin3x.cos4x = \dfrac{1}{2}\left( {\sin 7x - \sin x} \right){\text{ }}\left( {{\text{since sin}}\left( { - \theta } \right) = - \sin \theta } \right){\text{ }}$
Now integrating the above ,
$ \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{1}{2}\left[ {\int {\sin 7xdx} - \int {\sin xdx} } \right]$
$\Rightarrow \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{1}{2}\left[ { - \dfrac{{\cos 7x}}{7} + \cos x} \right] + C{\text{ }}\left( {\operatorname{si} {\text{nce }}\int {\sin \left( {ax + b} \right)dx = - \dfrac{{\cos \left( {ax + b} \right)}}{a}} {\text{ }}} \right)$
$\Rightarrow \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{{ - 1}}{{14}}\cos 7x + \dfrac{1}{2}\cos x + C$
Note - In order to include all antiderivatives of f(x) the constant of integration C is used for indefinite integrals. The importance of C is that it allows us to express the general form of antiderivatives.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

How is democracy better than other forms of government class 12 social science CBSE

What is virtual and erect image ?

Explain the energy losses in the transformer How are class 12 physics CBSE

