
Integrate sin3x.cos4x
Answer
601.8k+ views
Hint- To integrate some mathematical functions like sin3x.cos4x , we first need to change the multiplication sign between them using the trigonometric formula of $\sin a.\cos b = \dfrac{1}{2}\left( {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right)$ and then integrate them separately using integration formulas and put a constant at the end to get the required solution.
Complete step by step answer:
We know that
Sin(a+b) = sina.cosb + cosa.sinb
Sin(a-b) = sina.cosb - cosa.sinb
On adding both the equations , we get
Sin(a+b) + sin(a-b)= 2sina.cosb
$ \Rightarrow \sin a.\cos b = \dfrac{1}{2}\left( {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right)$
Therefore ,
sin3x.cos4x = $\dfrac{1}{2}\left( {\sin \left( {3x + 4x} \right) + \sin \left( {3x - 4x} \right)} \right)$
$\Rightarrow sin3x.cos4x = \dfrac{1}{2}\left( {\sin 7x - \sin x} \right){\text{ }}\left( {{\text{since sin}}\left( { - \theta } \right) = - \sin \theta } \right){\text{ }}$
Now integrating the above ,
$ \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{1}{2}\left[ {\int {\sin 7xdx} - \int {\sin xdx} } \right]$
$\Rightarrow \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{1}{2}\left[ { - \dfrac{{\cos 7x}}{7} + \cos x} \right] + C{\text{ }}\left( {\operatorname{si} {\text{nce }}\int {\sin \left( {ax + b} \right)dx = - \dfrac{{\cos \left( {ax + b} \right)}}{a}} {\text{ }}} \right)$
$\Rightarrow \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{{ - 1}}{{14}}\cos 7x + \dfrac{1}{2}\cos x + C$
Note - In order to include all antiderivatives of f(x) the constant of integration C is used for indefinite integrals. The importance of C is that it allows us to express the general form of antiderivatives.
Complete step by step answer:
We know that
Sin(a+b) = sina.cosb + cosa.sinb
Sin(a-b) = sina.cosb - cosa.sinb
On adding both the equations , we get
Sin(a+b) + sin(a-b)= 2sina.cosb
$ \Rightarrow \sin a.\cos b = \dfrac{1}{2}\left( {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right)$
Therefore ,
sin3x.cos4x = $\dfrac{1}{2}\left( {\sin \left( {3x + 4x} \right) + \sin \left( {3x - 4x} \right)} \right)$
$\Rightarrow sin3x.cos4x = \dfrac{1}{2}\left( {\sin 7x - \sin x} \right){\text{ }}\left( {{\text{since sin}}\left( { - \theta } \right) = - \sin \theta } \right){\text{ }}$
Now integrating the above ,
$ \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{1}{2}\left[ {\int {\sin 7xdx} - \int {\sin xdx} } \right]$
$\Rightarrow \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{1}{2}\left[ { - \dfrac{{\cos 7x}}{7} + \cos x} \right] + C{\text{ }}\left( {\operatorname{si} {\text{nce }}\int {\sin \left( {ax + b} \right)dx = - \dfrac{{\cos \left( {ax + b} \right)}}{a}} {\text{ }}} \right)$
$\Rightarrow \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{{ - 1}}{{14}}\cos 7x + \dfrac{1}{2}\cos x + C$
Note - In order to include all antiderivatives of f(x) the constant of integration C is used for indefinite integrals. The importance of C is that it allows us to express the general form of antiderivatives.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

