
Integrate \[\log \left( 1+\tan x \right)\] from \[0\] to \[\dfrac{\pi }{4}\].
Answer
415.8k+ views
Hint: In order to integrate the given function \[\log \left( 1+\tan x \right)\] from \[0\] to \[\dfrac{\pi }{4}\], we will be considering the given limits by substituting them in the function given. Then by applying the suitable integration formulas, we will be solving the given function and obtaining the required solution.
Complete step-by-step solution:
Now let us have a brief regarding integration. It is nothing but calculating the integral. The integrals are usually termed regarding the definite integrals and indefinite integrals are used for antiderivatives. Integration is the reverse process of differentiation. There are two types of integrals. They are: definite and indefinite integrals. Integration can be performed in different methods. They are: Integration by Substitution, Integration by Parts, Integration using Trigonometric Identities, Integration of Some Particular Function and Integration by Partial Fraction.
Now let us perform integration on \[\log \left( 1+\tan x \right)\] from \[0\] to \[\dfrac{\pi }{4}\].
Let us write it as \[I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)}\to \left( 1 \right)\]
Using the formula \[\int\limits_{0}^{a}{f\left( x \right)dx=\int\limits_{0}^{a}{f\left( a-x \right)dx}}\], let us express the given function. We get
\[\Rightarrow \]\[I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ 1+\tan \left( \dfrac{\pi }{4}-x \right) \right]dx}\]
Upon solving this,
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ 1+\dfrac{\tan \dfrac{\pi }{4}-\tan x}{1+\tan \dfrac{\pi }{4}\tan x} \right]}dx\] \[\left[ \because \left( \tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b} \right) \right]\]
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ \dfrac{1-\tan x}{1+1\cdot \tan x} \right]}dx\] We know that \[\left( \tan \dfrac{\pi }{4}=1 \right)\]
Then solving accordingly, we obtain
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ \dfrac{1-\tan x+1-\tan x}{1+\tan x} \right]}dx\]
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ \dfrac{2}{1+\tan x} \right]}dx\]
\[\Rightarrow I=\]\[\int\limits_{0}^{\dfrac{\pi }{4}}{\left[ \log 2-\log \left( 1+\tan x \right) \right]}\] \[\left[ \because \log \dfrac{a}{b}=\log a-lobg \right]\]
Splitting up according to the formula, we get
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log 2dx-\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)dx\to \left( 2 \right)}}\]
Now upon adding the two equations, we get
\[\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)+}\int\limits_{0}^{\dfrac{\pi }{4}}{\log 2dx-\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)dx}} \\
& 2I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log 2dx} \\
& \Rightarrow 2I=\log 2\int\limits_{0}^{\dfrac{\pi }{4}}{dx} \\
& \Rightarrow I=\dfrac{\log 2}{2}\left[ x \right]_{0}^{\dfrac{\pi }{4}} \\
& \Rightarrow I=\dfrac{\log 2}{2}\left[ \dfrac{\pi }{4}-0 \right] \\
& \Rightarrow I=\dfrac{\log 2}{2}\times \dfrac{\pi }{4} \\
& \Rightarrow I=\dfrac{\pi }{8}\log 2 \\
\end{align}\]
Note: While performing the integration, we must be aware of the sum rule, power rule, difference rule, etc. While solving, we must cross check with the integration rules for easy solving of the functions given. We can apply integration in finding the areas, volumes, central points and many more.
Complete step-by-step solution:
Now let us have a brief regarding integration. It is nothing but calculating the integral. The integrals are usually termed regarding the definite integrals and indefinite integrals are used for antiderivatives. Integration is the reverse process of differentiation. There are two types of integrals. They are: definite and indefinite integrals. Integration can be performed in different methods. They are: Integration by Substitution, Integration by Parts, Integration using Trigonometric Identities, Integration of Some Particular Function and Integration by Partial Fraction.
Now let us perform integration on \[\log \left( 1+\tan x \right)\] from \[0\] to \[\dfrac{\pi }{4}\].
Let us write it as \[I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)}\to \left( 1 \right)\]
Using the formula \[\int\limits_{0}^{a}{f\left( x \right)dx=\int\limits_{0}^{a}{f\left( a-x \right)dx}}\], let us express the given function. We get
\[\Rightarrow \]\[I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ 1+\tan \left( \dfrac{\pi }{4}-x \right) \right]dx}\]
Upon solving this,
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ 1+\dfrac{\tan \dfrac{\pi }{4}-\tan x}{1+\tan \dfrac{\pi }{4}\tan x} \right]}dx\] \[\left[ \because \left( \tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b} \right) \right]\]
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ \dfrac{1-\tan x}{1+1\cdot \tan x} \right]}dx\] We know that \[\left( \tan \dfrac{\pi }{4}=1 \right)\]
Then solving accordingly, we obtain
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ \dfrac{1-\tan x+1-\tan x}{1+\tan x} \right]}dx\]
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ \dfrac{2}{1+\tan x} \right]}dx\]
\[\Rightarrow I=\]\[\int\limits_{0}^{\dfrac{\pi }{4}}{\left[ \log 2-\log \left( 1+\tan x \right) \right]}\] \[\left[ \because \log \dfrac{a}{b}=\log a-lobg \right]\]
Splitting up according to the formula, we get
\[\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log 2dx-\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)dx\to \left( 2 \right)}}\]
Now upon adding the two equations, we get
\[\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)+}\int\limits_{0}^{\dfrac{\pi }{4}}{\log 2dx-\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)dx}} \\
& 2I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log 2dx} \\
& \Rightarrow 2I=\log 2\int\limits_{0}^{\dfrac{\pi }{4}}{dx} \\
& \Rightarrow I=\dfrac{\log 2}{2}\left[ x \right]_{0}^{\dfrac{\pi }{4}} \\
& \Rightarrow I=\dfrac{\log 2}{2}\left[ \dfrac{\pi }{4}-0 \right] \\
& \Rightarrow I=\dfrac{\log 2}{2}\times \dfrac{\pi }{4} \\
& \Rightarrow I=\dfrac{\pi }{8}\log 2 \\
\end{align}\]
Note: While performing the integration, we must be aware of the sum rule, power rule, difference rule, etc. While solving, we must cross check with the integration rules for easy solving of the functions given. We can apply integration in finding the areas, volumes, central points and many more.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
