
How do you integrate $ \int{\ln {{x}^{3}}dx} $ using integration by parts?
Answer
464.7k+ views
Hint: We start solving the problem by equating the given indefinite integral to a variable. We then recall the integration by parts as $ \int{f\left( x \right)\times g\left( x \right)dx}=f\left( x \right)\int{g\left( x \right)dx}-\int{\left( \dfrac{d\left( f\left( x \right) \right)}{dx}\int{g\left( x \right)dx} \right)dx} $ to proceed through the problem. We then make the necessary calculations and make use of the results $ \int{adx}=ax+C $ , $ \dfrac{d\left( \ln y \right)}{dx}=\dfrac{1}{y}\dfrac{dy}{dx} $ and $ \dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} $ to proceed further through the problem. We then make use of the fact that $ \ln {{x}^{n}}=n\ln x $ and make the necessary calculations to get the required answer.
Complete step by step answer:
According to the problem, we are asked to integrate $ \int{\ln {{x}^{3}}dx} $ using integration by parts.
Let us assume $ I=\int{\ln {{x}^{3}}dx} $ .
$ \Rightarrow I=\int{\ln {{x}^{3}}\times 1dx} $ ---(1).
We can see that the integrand is in the form of $ \int{f\left( x \right)\times g\left( x \right)dx} $ . From integration by parts, we know that $ \int{f\left( x \right)\times g\left( x \right)dx}=f\left( x \right)\int{g\left( x \right)dx}-\int{\left( \dfrac{d\left( f\left( x \right) \right)}{dx}\int{g\left( x \right)dx} \right)dx} $ . Let us use this result in equation (1).
$ \Rightarrow I=\ln {{x}^{3}}\int{1dx}-\int{\left( \dfrac{d\left( \ln {{x}^{3}} \right)}{dx}\int{1dx} \right)dx} $ ---(2).
We know that $ \int{adx}=ax+C $ and $ \dfrac{d\left( \ln y \right)}{dx}=\dfrac{1}{y}\dfrac{dy}{dx} $ . Let us use these results in equation (2).
$ \Rightarrow I=x\ln {{x}^{3}}-\int{\left( \dfrac{1}{{{x}^{3}}}\times \dfrac{d\left( {{x}^{3}} \right)}{dx}\times x \right)dx} $ ---(3).
We know that $ \dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} $ . Let us use this result in equation (3).
$ \Rightarrow I=x\ln {{x}^{3}}-\int{\left( \dfrac{1}{{{x}^{2}}}\times 3{{x}^{2}} \right)dx} $ .
$ \Rightarrow I=x\ln {{x}^{3}}-\int{3dx} $ ---(4).
We know that $ \int{adx}=ax+C $ . Let us use this result in equation (4).
$ \Rightarrow I=x\ln {{x}^{3}}-3x+C $ ---(5).
We know that $ \ln {{x}^{n}}=n\ln x $ . Let us use this result in equation (5).
$ \Rightarrow I=3x\ln x-3x+C $ .
$ \Rightarrow I=3x\left( \ln x-1 \right)+C $ .
$ \therefore $ We have found the result of integration $ \int{\ln {{x}^{3}}dx} $ as $ 3x\left( \ln x-1 \right)+C $ .
Note:
We should perform each step carefully in order to avoid confusion and calculation mistakes. We should not forget to add constant of integration while solving the problems related to indefinite integrals. Similarly, we can expect problems to find the value of $ \int\limits_{e}^{5.}{\ln {{x}^{3}}dx} $ . We can solve the problem by first applying the fact that $ \ln {{x}^{n}}=n\ln x $ to the integrand and then performing the integration by parts to get the required answer.
Complete step by step answer:
According to the problem, we are asked to integrate $ \int{\ln {{x}^{3}}dx} $ using integration by parts.
Let us assume $ I=\int{\ln {{x}^{3}}dx} $ .
$ \Rightarrow I=\int{\ln {{x}^{3}}\times 1dx} $ ---(1).
We can see that the integrand is in the form of $ \int{f\left( x \right)\times g\left( x \right)dx} $ . From integration by parts, we know that $ \int{f\left( x \right)\times g\left( x \right)dx}=f\left( x \right)\int{g\left( x \right)dx}-\int{\left( \dfrac{d\left( f\left( x \right) \right)}{dx}\int{g\left( x \right)dx} \right)dx} $ . Let us use this result in equation (1).
$ \Rightarrow I=\ln {{x}^{3}}\int{1dx}-\int{\left( \dfrac{d\left( \ln {{x}^{3}} \right)}{dx}\int{1dx} \right)dx} $ ---(2).
We know that $ \int{adx}=ax+C $ and $ \dfrac{d\left( \ln y \right)}{dx}=\dfrac{1}{y}\dfrac{dy}{dx} $ . Let us use these results in equation (2).
$ \Rightarrow I=x\ln {{x}^{3}}-\int{\left( \dfrac{1}{{{x}^{3}}}\times \dfrac{d\left( {{x}^{3}} \right)}{dx}\times x \right)dx} $ ---(3).
We know that $ \dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}} $ . Let us use this result in equation (3).
$ \Rightarrow I=x\ln {{x}^{3}}-\int{\left( \dfrac{1}{{{x}^{2}}}\times 3{{x}^{2}} \right)dx} $ .
$ \Rightarrow I=x\ln {{x}^{3}}-\int{3dx} $ ---(4).
We know that $ \int{adx}=ax+C $ . Let us use this result in equation (4).
$ \Rightarrow I=x\ln {{x}^{3}}-3x+C $ ---(5).
We know that $ \ln {{x}^{n}}=n\ln x $ . Let us use this result in equation (5).
$ \Rightarrow I=3x\ln x-3x+C $ .
$ \Rightarrow I=3x\left( \ln x-1 \right)+C $ .
$ \therefore $ We have found the result of integration $ \int{\ln {{x}^{3}}dx} $ as $ 3x\left( \ln x-1 \right)+C $ .
Note:
We should perform each step carefully in order to avoid confusion and calculation mistakes. We should not forget to add constant of integration while solving the problems related to indefinite integrals. Similarly, we can expect problems to find the value of $ \int\limits_{e}^{5.}{\ln {{x}^{3}}dx} $ . We can solve the problem by first applying the fact that $ \ln {{x}^{n}}=n\ln x $ to the integrand and then performing the integration by parts to get the required answer.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
