
Integrate:
\[\int{\dfrac{1}{3\sin x+4\cos x}}dx\]
Answer
575.7k+ views
Hint:
Use the half angle formula to simplify the expression.
Use the substitution method to solve the given integral.
Complete step by step answer:
Given that the integral is
\[\int{\dfrac{1}{3\sin x+4\cos x}}dx\]
In order to solve the given integral we need to use the following half angle formula followed the substitution method.
We know that
\[\cos x=\dfrac{1-{{\tan }^{2}}x/2}{1+{{\tan }^{2}}x/2}\]
\[\sin x=\dfrac{2\tan x/2}{1+{{\tan }^{2}}x/2}\]
Substitute the values in the given expression:
\[\int{\dfrac{dx}{3\left( \dfrac{2\tan x/2}{1+{{\tan }^{2}}x/2} \right)+4\left( \dfrac{1-{{\tan }^{2}}x/2}{1+{{\tan }^{2}}x/2} \right)}}\]
By simplifying the expression, we get
\[\int{\dfrac{\left( 1+{{\tan }^{2}}x/2 \right)\cdot dx}{4-4{{\tan }^{2}}x/2+6\tan \,x/2}}\]
Rewrite the expression by using the identity\[\left( 1+{{\tan }^{2}}A={{\sec }^{2}}A \right)\]:
\[\int{\dfrac{{{\sec }^{2}}x/2\,\,dx}{4-4{{\tan }^{2}}x/2+6\tan \,x/2}}\]
Let
\[\tan \,\,x/2=U\]
Differentiate both sides with respect to x
\[{{\sec }^{2}}x/2\,\dfrac{1}{2}dx=dU\]
Simplify the expression:
\[{{\sec }^{2}}x/2dx=2dU\]
Substitute these all values in the integral expression:
\[\int{\dfrac{2dU}{4-4{{U}^{2}}+6U}}\]
By taking 2 common from the denominator of expression, we get
\[\int{\dfrac{2dU}{2\left( 2-2{{U}^{2}}+3U \right)}}\]
Rewrite the integral after simplification:
\[\int{\dfrac{dU}{2-2{{U}^{2}}+3U}}\]
Rewrite the quadratic equation in the integral:
\[-\int{\dfrac{dU}{2{{U}^{2}}-3U-2}}\]
Solve the quadratic equation by splitting the middle term method:
\[-\int{\dfrac{dU}{2{{U}^{2}}-4U+U-2}}\]
\[\Rightarrow -\int{\dfrac{dU}{2U\left( U-2 \right)+1\left( U-2 \right)}}\]
\[\Rightarrow -\int{\dfrac{dU}{\left( 2U+1 \right)\left( U-2 \right)}}\]
Now, solve the expression \[\dfrac{1}{\left( 2U+1 \right)\left( U-2 \right)}\] by using partial fraction:
\[\dfrac{1}{\left( 2U+1 \right)\left( U-2 \right)}=\dfrac{A}{2U+1}+\dfrac{B}{U-2}\ldots \ldots \left( a \right)\]
Solve the equation for the value of \[A\]and \[B\]:
\[\dfrac{1}{\left( 2U+1 \right)\left( U-2 \right)}=\dfrac{A\left( U-2 \right)+B\left( 2U+1 \right)}{\left( 2U+1 \right)\left( U-2 \right)}\]
Again solve the equation:
\[\begin{align}
& 1=A\left( U-2 \right)+B\left( 2U+1 \right) \\
& \Rightarrow 1=AU-2A+2BU+B \\
& \Rightarrow 1=\left( A+2B \right)U-2A+B \\
\end{align}\]
Compare the coefficients of both sides of the equation:
\[\begin{align}
& A+2B=0\ldots \ldots \left( 1 \right) \\
& -2A+B=1\ldots \ldots \left( 2 \right) \\
\end{align}\]
Multiply by 2 in (1) both sides followed the addition of both equations:
\[\begin{align}
& 5B=1 \\
& \Rightarrow B=\dfrac{1}{5} \\
\end{align}\]
Substitute the value \[B=\dfrac{1}{5}\]in equation (2), we get
\[\begin{align}
& -2A+\dfrac{1}{5}=1 \\
& \Rightarrow 2A=\dfrac{1}{5}-1 \\
& \Rightarrow 2A=-\dfrac{4}{5} \\
& \Rightarrow A=-\dfrac{2}{5} \\
\end{align}\]
Now, substitute the values of\[A\]and \[B\]in equation (a), we get
\[\dfrac{1}{\left( 2U+1 \right)\left( U-2 \right)}=\dfrac{-2}{5\left( 2U+1 \right)}+\dfrac{1}{5\left( U-2 \right)}\]
Now the expression of integral will be
\[-\int{\left\{ \dfrac{-2}{5\left( 2U+1 \right)}+\dfrac{1}{5\left( U-2 \right)} \right\}}dU\]
Break the integral expression in two parts:
\[\int{\dfrac{2dU}{5\left( 2U+1 \right)}}-\int{\dfrac{dU}{5\left( U-2 \right)}}\]
Rewrite the expression after simplification:
\[\dfrac{2}{5}\int{\dfrac{dU}{\left( 2U+1 \right)}}-\dfrac{1}{5}\int{\dfrac{dU}{\left( U-2 \right)}}\]
Solve the integral by using the standard formula:
\[\dfrac{2}{5}\dfrac{\ln \left( 2U+2 \right)}{2}-\dfrac{1}{5}\ln \left( U-2 \right)+C\]
Simplify the expression:
\[\dfrac{1}{5}\ln \left( 2U+2 \right)-\dfrac{1}{5}\ln \left( U-2 \right)+C\]
Simplify the expression:
\[\dfrac{1}{5}\left[ \ln \left( 2U+1 \right)-\ln \left( U-2 \right) \right]+C\]
Rewrite the expression by using logarithm property:
\[\dfrac{1}{5}\left[ \ln \left\{ \dfrac{2U+1}{U-2} \right\} \right]+C\]
Now, substitute the value of \[U\]in terms of \[x,\]we get
\[\dfrac{1}{5}\left[ \ln \left\{ \dfrac{2\tan x/2+1}{\tan x/2-2} \right\} \right]+C\]
Hence
\[\int{\dfrac{1}{3\sin x+4\cos x}}dx=\dfrac{1}{5}\left[ \ln \left[ \dfrac{2\tan x/2+1}{\tan x/2-1} \right]+C \right.\]
Note:
When a denominator of fraction in integral is given in trigonometric terms then we always use the half angle formula to convert integral in simple form.
This type of integral is always solved by substitution method.
Use the half angle formula to simplify the expression.
Use the substitution method to solve the given integral.
Complete step by step answer:
Given that the integral is
\[\int{\dfrac{1}{3\sin x+4\cos x}}dx\]
In order to solve the given integral we need to use the following half angle formula followed the substitution method.
We know that
\[\cos x=\dfrac{1-{{\tan }^{2}}x/2}{1+{{\tan }^{2}}x/2}\]
\[\sin x=\dfrac{2\tan x/2}{1+{{\tan }^{2}}x/2}\]
Substitute the values in the given expression:
\[\int{\dfrac{dx}{3\left( \dfrac{2\tan x/2}{1+{{\tan }^{2}}x/2} \right)+4\left( \dfrac{1-{{\tan }^{2}}x/2}{1+{{\tan }^{2}}x/2} \right)}}\]
By simplifying the expression, we get
\[\int{\dfrac{\left( 1+{{\tan }^{2}}x/2 \right)\cdot dx}{4-4{{\tan }^{2}}x/2+6\tan \,x/2}}\]
Rewrite the expression by using the identity\[\left( 1+{{\tan }^{2}}A={{\sec }^{2}}A \right)\]:
\[\int{\dfrac{{{\sec }^{2}}x/2\,\,dx}{4-4{{\tan }^{2}}x/2+6\tan \,x/2}}\]
Let
\[\tan \,\,x/2=U\]
Differentiate both sides with respect to x
\[{{\sec }^{2}}x/2\,\dfrac{1}{2}dx=dU\]
Simplify the expression:
\[{{\sec }^{2}}x/2dx=2dU\]
Substitute these all values in the integral expression:
\[\int{\dfrac{2dU}{4-4{{U}^{2}}+6U}}\]
By taking 2 common from the denominator of expression, we get
\[\int{\dfrac{2dU}{2\left( 2-2{{U}^{2}}+3U \right)}}\]
Rewrite the integral after simplification:
\[\int{\dfrac{dU}{2-2{{U}^{2}}+3U}}\]
Rewrite the quadratic equation in the integral:
\[-\int{\dfrac{dU}{2{{U}^{2}}-3U-2}}\]
Solve the quadratic equation by splitting the middle term method:
\[-\int{\dfrac{dU}{2{{U}^{2}}-4U+U-2}}\]
\[\Rightarrow -\int{\dfrac{dU}{2U\left( U-2 \right)+1\left( U-2 \right)}}\]
\[\Rightarrow -\int{\dfrac{dU}{\left( 2U+1 \right)\left( U-2 \right)}}\]
Now, solve the expression \[\dfrac{1}{\left( 2U+1 \right)\left( U-2 \right)}\] by using partial fraction:
\[\dfrac{1}{\left( 2U+1 \right)\left( U-2 \right)}=\dfrac{A}{2U+1}+\dfrac{B}{U-2}\ldots \ldots \left( a \right)\]
Solve the equation for the value of \[A\]and \[B\]:
\[\dfrac{1}{\left( 2U+1 \right)\left( U-2 \right)}=\dfrac{A\left( U-2 \right)+B\left( 2U+1 \right)}{\left( 2U+1 \right)\left( U-2 \right)}\]
Again solve the equation:
\[\begin{align}
& 1=A\left( U-2 \right)+B\left( 2U+1 \right) \\
& \Rightarrow 1=AU-2A+2BU+B \\
& \Rightarrow 1=\left( A+2B \right)U-2A+B \\
\end{align}\]
Compare the coefficients of both sides of the equation:
\[\begin{align}
& A+2B=0\ldots \ldots \left( 1 \right) \\
& -2A+B=1\ldots \ldots \left( 2 \right) \\
\end{align}\]
Multiply by 2 in (1) both sides followed the addition of both equations:
\[\begin{align}
& 5B=1 \\
& \Rightarrow B=\dfrac{1}{5} \\
\end{align}\]
Substitute the value \[B=\dfrac{1}{5}\]in equation (2), we get
\[\begin{align}
& -2A+\dfrac{1}{5}=1 \\
& \Rightarrow 2A=\dfrac{1}{5}-1 \\
& \Rightarrow 2A=-\dfrac{4}{5} \\
& \Rightarrow A=-\dfrac{2}{5} \\
\end{align}\]
Now, substitute the values of\[A\]and \[B\]in equation (a), we get
\[\dfrac{1}{\left( 2U+1 \right)\left( U-2 \right)}=\dfrac{-2}{5\left( 2U+1 \right)}+\dfrac{1}{5\left( U-2 \right)}\]
Now the expression of integral will be
\[-\int{\left\{ \dfrac{-2}{5\left( 2U+1 \right)}+\dfrac{1}{5\left( U-2 \right)} \right\}}dU\]
Break the integral expression in two parts:
\[\int{\dfrac{2dU}{5\left( 2U+1 \right)}}-\int{\dfrac{dU}{5\left( U-2 \right)}}\]
Rewrite the expression after simplification:
\[\dfrac{2}{5}\int{\dfrac{dU}{\left( 2U+1 \right)}}-\dfrac{1}{5}\int{\dfrac{dU}{\left( U-2 \right)}}\]
Solve the integral by using the standard formula:
\[\dfrac{2}{5}\dfrac{\ln \left( 2U+2 \right)}{2}-\dfrac{1}{5}\ln \left( U-2 \right)+C\]
Simplify the expression:
\[\dfrac{1}{5}\ln \left( 2U+2 \right)-\dfrac{1}{5}\ln \left( U-2 \right)+C\]
Simplify the expression:
\[\dfrac{1}{5}\left[ \ln \left( 2U+1 \right)-\ln \left( U-2 \right) \right]+C\]
Rewrite the expression by using logarithm property:
\[\dfrac{1}{5}\left[ \ln \left\{ \dfrac{2U+1}{U-2} \right\} \right]+C\]
Now, substitute the value of \[U\]in terms of \[x,\]we get
\[\dfrac{1}{5}\left[ \ln \left\{ \dfrac{2\tan x/2+1}{\tan x/2-2} \right\} \right]+C\]
Hence
\[\int{\dfrac{1}{3\sin x+4\cos x}}dx=\dfrac{1}{5}\left[ \ln \left[ \dfrac{2\tan x/2+1}{\tan x/2-1} \right]+C \right.\]
Note:
When a denominator of fraction in integral is given in trigonometric terms then we always use the half angle formula to convert integral in simple form.
This type of integral is always solved by substitution method.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

