
How do you integrate \[\int {{e^x}.\sin x} dx\] by integration by parts method?
Answer
551.7k+ views
Hint: Integration by parts is used for integrating the product of two functions. This method is used to solve the integration easily. We know the formula for integrating by parts is given by \[\int {u{\text{ }}v{\text{ }}dx = u\int {v{\text{ }}dx - \int {\left( {\dfrac{{du}}{{dx}}\int {v{\text{ }}dx} } \right)} } } dx\]. Since in the given problem we have the product of two functions, we take \[u = \sin x\] and \[v = {e^x}\].
Complete step by step solution:
Given, \[\int {{e^x}.\sin x} dx\].
Let’s take \[I = \int {{e^x}.\sin x} .dx\]
(Because if we keep on integrating it’s never going to end, we need to apply integration by parts infinite times so we took it as ‘I’).
As we know the formula for integration by parts,
\[\int {u{\text{ }}v{\text{ }}dx = u\int {v{\text{ }}dx - \int {\left( {\dfrac{{du}}{{dx}}\int {v{\text{
}}dx} } \right)} } } dx\]
And we have \[u = \sin x\] and \[v = {e^x}\].
Substituting we have
\[I = \int {{e^x}.\sin x} .dx\]
\[ = \sin x\int {{e^x}{\text{ }}dx - \int {\left( {\dfrac{{d\left( {\sin x} \right)}}{{dx}}\int {{e^x}{\text{
}}dx} } \right)} } dx\]
We know that \[\int {{e^x}{\text{ }}dx = {e^x}} \] and \[\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x\]. Substituting these we have,
\[ = \sin x.{e^x} - \int {\cos x.{e^x}.dx} \]
Again we need to apply integration by parts formula to \[\int {\cos x.{e^x}.dx} \].
Where \[u = \cos x\] and \[v = {e^x}\].
\[ = \sin x.{e^x} - \left[ {\cos x.\int {{e^x}{\text{ }}dx - \int {\left( {\dfrac{{d\left( {\cos x}
\right)}}{{dx}}\int {{e^x}{\text{ }}dx} } \right)} } dx} \right]\]
We know that \[\int {{e^x}{\text{ }}dx = {e^x}} \] and \[\dfrac{{d\left( {\cos x} \right)}}{{dx}} = - \sin x\]. Substituting these we have,
\[ = \sin x.{e^x} - \left[ {\cos x.{e^x} - \int { - \sin x.{e^x}.dx} } \right]\]
\[ = \sin x.{e^x} - \left[ {\cos x.{e^x} + \int {\sin x.{e^x}.dx} } \right]\]
\[I = \sin x.{e^x} - \cos x.{e^x} - \int {{e^x}.\sin x.dx} \]
But we have taken \[I = \int {{e^x}.\sin x} .dx\]. Then above becomes
\[I = \sin x.{e^x} - \cos x.{e^x} - I + c\]
(since we removes a integration so we need to add integration constant)
\[I + I = \sin x.{e^x} - \cos x.{e^x} + c\]
\[2I = \sin x.{e^x} - \cos x.{e^x} + c\]
\[I = \dfrac{1}{2}\left( {\sin x.{e^x} - \cos x.{e^x}} \right) + c\]
Hence we have,
\[ \Rightarrow \int {{e^x}.\sin x} .dx = \dfrac{1}{2}\left( {\sin x.{e^x} - \cos x.{e^x}} \right) + c\], where ‘c’ is the integration constant.
Note: Here we use a rule called ‘ILATE’. The integral of two functions is taken by considering the first term as first function and second term as a second function. This is called the ‘ILATE’ rule. In the given problem we have \[{e^x}.\sin x\]. In this we considered \[\sin x\] as a first function and \[{e^x}\] as a second function. That is the preference order of this rule is based on some functions such as Inverse, Logarithm, Algebraic, Trigonometry, exponent. As we can see we have trigonometric functions first in the preference and then exponent.
Complete step by step solution:
Given, \[\int {{e^x}.\sin x} dx\].
Let’s take \[I = \int {{e^x}.\sin x} .dx\]
(Because if we keep on integrating it’s never going to end, we need to apply integration by parts infinite times so we took it as ‘I’).
As we know the formula for integration by parts,
\[\int {u{\text{ }}v{\text{ }}dx = u\int {v{\text{ }}dx - \int {\left( {\dfrac{{du}}{{dx}}\int {v{\text{
}}dx} } \right)} } } dx\]
And we have \[u = \sin x\] and \[v = {e^x}\].
Substituting we have
\[I = \int {{e^x}.\sin x} .dx\]
\[ = \sin x\int {{e^x}{\text{ }}dx - \int {\left( {\dfrac{{d\left( {\sin x} \right)}}{{dx}}\int {{e^x}{\text{
}}dx} } \right)} } dx\]
We know that \[\int {{e^x}{\text{ }}dx = {e^x}} \] and \[\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x\]. Substituting these we have,
\[ = \sin x.{e^x} - \int {\cos x.{e^x}.dx} \]
Again we need to apply integration by parts formula to \[\int {\cos x.{e^x}.dx} \].
Where \[u = \cos x\] and \[v = {e^x}\].
\[ = \sin x.{e^x} - \left[ {\cos x.\int {{e^x}{\text{ }}dx - \int {\left( {\dfrac{{d\left( {\cos x}
\right)}}{{dx}}\int {{e^x}{\text{ }}dx} } \right)} } dx} \right]\]
We know that \[\int {{e^x}{\text{ }}dx = {e^x}} \] and \[\dfrac{{d\left( {\cos x} \right)}}{{dx}} = - \sin x\]. Substituting these we have,
\[ = \sin x.{e^x} - \left[ {\cos x.{e^x} - \int { - \sin x.{e^x}.dx} } \right]\]
\[ = \sin x.{e^x} - \left[ {\cos x.{e^x} + \int {\sin x.{e^x}.dx} } \right]\]
\[I = \sin x.{e^x} - \cos x.{e^x} - \int {{e^x}.\sin x.dx} \]
But we have taken \[I = \int {{e^x}.\sin x} .dx\]. Then above becomes
\[I = \sin x.{e^x} - \cos x.{e^x} - I + c\]
(since we removes a integration so we need to add integration constant)
\[I + I = \sin x.{e^x} - \cos x.{e^x} + c\]
\[2I = \sin x.{e^x} - \cos x.{e^x} + c\]
\[I = \dfrac{1}{2}\left( {\sin x.{e^x} - \cos x.{e^x}} \right) + c\]
Hence we have,
\[ \Rightarrow \int {{e^x}.\sin x} .dx = \dfrac{1}{2}\left( {\sin x.{e^x} - \cos x.{e^x}} \right) + c\], where ‘c’ is the integration constant.
Note: Here we use a rule called ‘ILATE’. The integral of two functions is taken by considering the first term as first function and second term as a second function. This is called the ‘ILATE’ rule. In the given problem we have \[{e^x}.\sin x\]. In this we considered \[\sin x\] as a first function and \[{e^x}\] as a second function. That is the preference order of this rule is based on some functions such as Inverse, Logarithm, Algebraic, Trigonometry, exponent. As we can see we have trigonometric functions first in the preference and then exponent.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

