
How do you integrate $ \int \dfrac{{{x^2}}}{{\sqrt {{x^2} - 4} }}dx $ using trigonometric substitution?
Answer
541.8k+ views
Hint: To solve this question, first we will assume any of the set of variables or constant be another variable to get the expression easier. And conclude until the non-operational state is not achieved. And finally substitute the assumed value.
Complete step-by-step answer:
Let, \[I = \int \dfrac{{{x^2}}}{{\sqrt {{x^2} - 4} }}dx\] .
Now, we can substitute:
$ x = 2.\sec y $
Differentiate the above equation,
$
\Rightarrow \dfrac{{dx}}{{dy}} = 2\sec y.\tan y \\
\Rightarrow dx = 2\sec y.\tan y.dy \;
$
Put the value of $ x $ in $ I $ :
$
\therefore I = \int \dfrac{{4{{\sec }^2}y}}{{\sqrt {4{{\sec }^2}y - 4} }}.2\sec y.\tan ydy \\
= \int \dfrac{{4{{\sec }^2}y}}{{2\tan y}}.2\sec y.\tan ydy \\
= 4\int {\sec ^3}ydy \\
= 4\int \sec y.{\sec ^2}ydy \\
= 4\int \sqrt {{{\tan }^2}y + 1} .{\sec ^2}ydy \;
$
Now, we substitute: $ \tan y = t $ ;
Differentiate the above substitution:
$ \Rightarrow {\sec ^2}ydy = dt $
$
\therefore I = 4\int \sqrt {{t^2} + 1} dt \\
= 4\{ \dfrac{t}{2}\sqrt {{t^2} + 1} + \dfrac{1}{2}\ln |t + \sqrt {{t^2} + 1} |\} \\
= 2\{ \tan y.\sec y + \ln |\tan y + \sec y|\} \;
$
$ (\because t = \tan y) $
Now, returning to:
$ \sec y = \dfrac{x}{2} $ , so that: $ \tan y = \sqrt {\dfrac{{{x^2}}}{4} - 1} $
SO, we have now:
$
\therefore I = 2\{ \dfrac{x}{2}.\dfrac{{\sqrt {{x^2} - 4} }}{2} + \ln |\dfrac{x}{2} + \dfrac{{\sqrt {{x^2} - 4} }}{2}|\} \\
\Rightarrow I = \dfrac{x}{2}.\sqrt {{x^2} - 4} + 2\ln |\dfrac{x}{2} + \dfrac{{\sqrt {{x^2} - 4} }}{2}| + C \;
$
,or,
$ I = \dfrac{x}{2}\sqrt {{x^2} - 4} + 2\ln |x + \sqrt {{x^2} - 4} | + c $ , $ c = C - 2\ln 2 $
However, the integral can easily be dealt with without using the substitution as follows:
$
I = \int \dfrac{{{x^2}}}{{\sqrt {{x^2} - 4} }}dx \\
= \int \{ \dfrac{{({x^2} - 4) + 4}}{{\sqrt {{x^2} - 4} }}dx\, \\
= \int \{ \dfrac{{({x^2} - 4)}}{{\sqrt {{x^2} - 4} }} + \dfrac{4}{{\sqrt {{x^2} - 4} }}\} dx \\
= \int \sqrt {{x^2} - 4} dx + 4\int \dfrac{1}{{\sqrt {{x^2} - 4} }}dx \\
= \{ \dfrac{x}{2}\sqrt {{x^2} - 4} - \dfrac{4}{2}\ln |x + \sqrt {{x^2} - 4} |\} + 4\ln |x + \sqrt {{x^2} - 4} | \;
$
$ \therefore I = \dfrac{x}{2}\sqrt {{x^2} - 4} + 2\ln |x + \sqrt {{x^2} - 4} | + {C_1} $
So, the correct answer is “ $ \dfrac{x}{2}\sqrt {{x^2} - 4} + 2\ln |x + \sqrt {{x^2} - 4} | + {C_1} $ ”.
Note: Usually the method of integration by substitution is extremely useful when we make a substitution for a function whose derivative is also present in the integrand. Doing so, the function simplifies and then the basic formulas of integration can be used to integrate the function.
Complete step-by-step answer:
Let, \[I = \int \dfrac{{{x^2}}}{{\sqrt {{x^2} - 4} }}dx\] .
Now, we can substitute:
$ x = 2.\sec y $
Differentiate the above equation,
$
\Rightarrow \dfrac{{dx}}{{dy}} = 2\sec y.\tan y \\
\Rightarrow dx = 2\sec y.\tan y.dy \;
$
Put the value of $ x $ in $ I $ :
$
\therefore I = \int \dfrac{{4{{\sec }^2}y}}{{\sqrt {4{{\sec }^2}y - 4} }}.2\sec y.\tan ydy \\
= \int \dfrac{{4{{\sec }^2}y}}{{2\tan y}}.2\sec y.\tan ydy \\
= 4\int {\sec ^3}ydy \\
= 4\int \sec y.{\sec ^2}ydy \\
= 4\int \sqrt {{{\tan }^2}y + 1} .{\sec ^2}ydy \;
$
Now, we substitute: $ \tan y = t $ ;
Differentiate the above substitution:
$ \Rightarrow {\sec ^2}ydy = dt $
$
\therefore I = 4\int \sqrt {{t^2} + 1} dt \\
= 4\{ \dfrac{t}{2}\sqrt {{t^2} + 1} + \dfrac{1}{2}\ln |t + \sqrt {{t^2} + 1} |\} \\
= 2\{ \tan y.\sec y + \ln |\tan y + \sec y|\} \;
$
$ (\because t = \tan y) $
Now, returning to:
$ \sec y = \dfrac{x}{2} $ , so that: $ \tan y = \sqrt {\dfrac{{{x^2}}}{4} - 1} $
SO, we have now:
$
\therefore I = 2\{ \dfrac{x}{2}.\dfrac{{\sqrt {{x^2} - 4} }}{2} + \ln |\dfrac{x}{2} + \dfrac{{\sqrt {{x^2} - 4} }}{2}|\} \\
\Rightarrow I = \dfrac{x}{2}.\sqrt {{x^2} - 4} + 2\ln |\dfrac{x}{2} + \dfrac{{\sqrt {{x^2} - 4} }}{2}| + C \;
$
,or,
$ I = \dfrac{x}{2}\sqrt {{x^2} - 4} + 2\ln |x + \sqrt {{x^2} - 4} | + c $ , $ c = C - 2\ln 2 $
However, the integral can easily be dealt with without using the substitution as follows:
$
I = \int \dfrac{{{x^2}}}{{\sqrt {{x^2} - 4} }}dx \\
= \int \{ \dfrac{{({x^2} - 4) + 4}}{{\sqrt {{x^2} - 4} }}dx\, \\
= \int \{ \dfrac{{({x^2} - 4)}}{{\sqrt {{x^2} - 4} }} + \dfrac{4}{{\sqrt {{x^2} - 4} }}\} dx \\
= \int \sqrt {{x^2} - 4} dx + 4\int \dfrac{1}{{\sqrt {{x^2} - 4} }}dx \\
= \{ \dfrac{x}{2}\sqrt {{x^2} - 4} - \dfrac{4}{2}\ln |x + \sqrt {{x^2} - 4} |\} + 4\ln |x + \sqrt {{x^2} - 4} | \;
$
$ \therefore I = \dfrac{x}{2}\sqrt {{x^2} - 4} + 2\ln |x + \sqrt {{x^2} - 4} | + {C_1} $
So, the correct answer is “ $ \dfrac{x}{2}\sqrt {{x^2} - 4} + 2\ln |x + \sqrt {{x^2} - 4} | + {C_1} $ ”.
Note: Usually the method of integration by substitution is extremely useful when we make a substitution for a function whose derivative is also present in the integrand. Doing so, the function simplifies and then the basic formulas of integration can be used to integrate the function.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

