Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

How do you integrate $ \int \dfrac{{{x^2} + 2x}}{{{x^2} + 2x + 1}}dx $ using substitution?

Answer
VerifiedVerified
547.5k+ views
Hint: To solve this question, first we will make the given integration expression simple to integrate further. Then assume one of them factors in the expression and we can easily proceed to the conclusion.

Complete step by step solution:
To make the given expression simple, first we will factorise the given expression:
 $
  \int \dfrac{{({x^2} + 2x)}}{{{x^2} + 2x + 1}}dx \\
   = \int \dfrac{{x(x + 2)}}{{{{(x + 1)}^2}}}dx \;
  $
Now, let $ (x + 1) $ be $ u $ or $ u = x + 1 $ .
Differentiate $ u = x + 1 $ :
\[
   \Rightarrow \dfrac{{du}}{{dx}} = 1 + 0 \\
   \Rightarrow du = dx \;
 \]
 $
  \because u = x + 1 \\
   \Rightarrow u + 1 = x + 2 \\
  \therefore x = u - 1 \;
  $
So,
 $
  \int \dfrac{{x(x + 2)dx}}{{{{(x + 1)}^2}}} = \int \dfrac{{(u + 1)(u - 1)du}}{{{u^2}}} \\
   = \int \dfrac{{({u^2} - 1)}}{{{u^2}}}du \\
   = \int (1 - \dfrac{1}{{{u^2}}})du \\
   = u + \dfrac{1}{u} \\
   = (x + 1) + \dfrac{1}{{x + 1}} + C \;
  $
So, the correct answer is “ $ (x + 1) + \dfrac{1}{{x + 1}} + C $ ”.

Note: - Usually the method of integration by substitution is extremely useful when we make a substitution for a function whose derivative is also present in the integrand. Doing so, the function simplifies and then the basic formulas of integration can be used to integrate the function.