
Integrate: $\int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} $
Answer
552k+ views
Hint: First of all this is an indefinite integral which is one of the two types of integrals. Indefinite integrals have no limits on the integral, that is they are integrated indefinitely. Here in order to solve this particular given indefinite integral we use trigonometric sum to product formula and a few trigonometric identities and the trigonometric sum and difference formulas.
Step-By-Step answer:
The formulas used here are given below:
Trigonometric sum to product formula: $\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$
Trigonometric cosine formula: $\cos 2A = 2{\cos ^2}A - 1$
Trigonometric cosine formula: $\cos 3A = 4{\cos ^3}A - 3\cos A$
$ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} $
Now consider $\cos 5x + \cos 4x$, now apply sum to product formula here:
$ \Rightarrow \cos 5x + \cos 4x = 2\cos \left( {\dfrac{{5x + 4x}}{2}} \right)\cos \left( {\dfrac{{5x - 4x}}{2}} \right)$
$ \Rightarrow \cos 5x + \cos 4x = 2\cos \left( {\dfrac{{9x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)$
Now consider $\cos 3x$, apply the trigonometric identity:
$ \Rightarrow \cos 3x = 2{\cos ^2}\left( {\dfrac{{3x}}{2}} \right) - 1$
Substitute these solved expressions in the integral:
$ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = \int {\dfrac{{2\cos \left( {\dfrac{{9x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)}}{{1 - 2\left( {2{{\cos }^2}\left( {\dfrac{{3x}}{2}} \right) - 1} \right)}}} dx$
$ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = \int {\dfrac{{2\cos \left( {\dfrac{{9x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)}}{{3 - 4{{\cos }^2}\left( {\dfrac{{3x}}{2}} \right)}}} dx$
Now multiply and divide inside the integral with $\cos \dfrac{{3x}}{2}$, as given below:
$ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = \int {\dfrac{{2\cos \left( {\dfrac{{9x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)}}{{3 - 4{{\cos }^2}\left( {\dfrac{{3x}}{2}} \right)}}} \times \dfrac{{\cos \dfrac{{3x}}{2}}}{{\cos \dfrac{{3x}}{2}}}dx$
\[ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = \int {\dfrac{{2\cos \left( {\dfrac{{9x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)\cos \dfrac{{3x}}{2}}}{{3\cos \dfrac{{3x}}{2} - 4{{\cos }^3}\left( {\dfrac{{3x}}{2}} \right)}}} dx\]
As \[4{\cos ^3}\left( {\dfrac{{3x}}{2}} \right) - 3\cos \dfrac{{3x}}{2} = \cos \left( {3 \times \dfrac{{3x}}{2}} \right)\], is a trigonometric formula of cosine, simplifying the integral :
\[ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = \int {\dfrac{{2\cos \left( {\dfrac{{9x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)\cos \dfrac{{3x}}{2}}}{{ - \cos \left( {\dfrac{{9x}}{2}} \right)}}} dx\]
\[ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = - \int {2\cos \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{{3x}}{2}} \right)} dx\]
Now again applying the trigonometric product to sum formula here,
Consider \[2\cos \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{{3x}}{2}} \right) = \cos (2x) + \cos (x)\], substituting this in the integral:
\[ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = - \int {\left( {\cos (2x) + \cos (x)} \right)} dx\]
\[ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = - \int {\cos (2x)} dx - \int {\cos xdx} \]
\[ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = - \dfrac{{\sin (2x)}}{2} - \sin x + c\]
\[\therefore \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = - \dfrac{{\sin (2x)}}{2} - \sin x + c\]
Note: Here totally three different kinds of trigonometric formulas are used to solve the given integral, which is an indefinite integral, which means that the integral has no limits, and is integrated indefinitely. Here the trigonometric sum to product formula is used and also the trigonometric product to sum formula is used. Various trigonometric identities are also used which are very important to solve any trigonometric based problem.
Step-By-Step answer:
The formulas used here are given below:
Trigonometric sum to product formula: $\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$
Trigonometric cosine formula: $\cos 2A = 2{\cos ^2}A - 1$
Trigonometric cosine formula: $\cos 3A = 4{\cos ^3}A - 3\cos A$
$ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} $
Now consider $\cos 5x + \cos 4x$, now apply sum to product formula here:
$ \Rightarrow \cos 5x + \cos 4x = 2\cos \left( {\dfrac{{5x + 4x}}{2}} \right)\cos \left( {\dfrac{{5x - 4x}}{2}} \right)$
$ \Rightarrow \cos 5x + \cos 4x = 2\cos \left( {\dfrac{{9x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)$
Now consider $\cos 3x$, apply the trigonometric identity:
$ \Rightarrow \cos 3x = 2{\cos ^2}\left( {\dfrac{{3x}}{2}} \right) - 1$
Substitute these solved expressions in the integral:
$ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = \int {\dfrac{{2\cos \left( {\dfrac{{9x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)}}{{1 - 2\left( {2{{\cos }^2}\left( {\dfrac{{3x}}{2}} \right) - 1} \right)}}} dx$
$ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = \int {\dfrac{{2\cos \left( {\dfrac{{9x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)}}{{3 - 4{{\cos }^2}\left( {\dfrac{{3x}}{2}} \right)}}} dx$
Now multiply and divide inside the integral with $\cos \dfrac{{3x}}{2}$, as given below:
$ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = \int {\dfrac{{2\cos \left( {\dfrac{{9x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)}}{{3 - 4{{\cos }^2}\left( {\dfrac{{3x}}{2}} \right)}}} \times \dfrac{{\cos \dfrac{{3x}}{2}}}{{\cos \dfrac{{3x}}{2}}}dx$
\[ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = \int {\dfrac{{2\cos \left( {\dfrac{{9x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)\cos \dfrac{{3x}}{2}}}{{3\cos \dfrac{{3x}}{2} - 4{{\cos }^3}\left( {\dfrac{{3x}}{2}} \right)}}} dx\]
As \[4{\cos ^3}\left( {\dfrac{{3x}}{2}} \right) - 3\cos \dfrac{{3x}}{2} = \cos \left( {3 \times \dfrac{{3x}}{2}} \right)\], is a trigonometric formula of cosine, simplifying the integral :
\[ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = \int {\dfrac{{2\cos \left( {\dfrac{{9x}}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)\cos \dfrac{{3x}}{2}}}{{ - \cos \left( {\dfrac{{9x}}{2}} \right)}}} dx\]
\[ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = - \int {2\cos \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{{3x}}{2}} \right)} dx\]
Now again applying the trigonometric product to sum formula here,
Consider \[2\cos \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{{3x}}{2}} \right) = \cos (2x) + \cos (x)\], substituting this in the integral:
\[ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = - \int {\left( {\cos (2x) + \cos (x)} \right)} dx\]
\[ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = - \int {\cos (2x)} dx - \int {\cos xdx} \]
\[ \Rightarrow \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = - \dfrac{{\sin (2x)}}{2} - \sin x + c\]
\[\therefore \int {\dfrac{{\cos 5x + \cos 4x}}{{1 - 2\cos 3x}}dx} = - \dfrac{{\sin (2x)}}{2} - \sin x + c\]
Note: Here totally three different kinds of trigonometric formulas are used to solve the given integral, which is an indefinite integral, which means that the integral has no limits, and is integrated indefinitely. Here the trigonometric sum to product formula is used and also the trigonometric product to sum formula is used. Various trigonometric identities are also used which are very important to solve any trigonometric based problem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

