
Integrate \[\int {\dfrac{{1 + \sin x}}{{\sin x\left( {1 + \cos x} \right)}}} \,dx\]?
Answer
490.2k+ views
Hint:In order to solve this question first, we assume a variable equal to the given integration. Then we make a substitution like \[t = \tan \dfrac{x}{2}\] and find the value of all other terms in terms of a new variable by using the formulas. Then simplify that expression and split all the parts and then integrate all the parts separately and again put the value in variable x.
Complete step by step answer:
Let \[I = \int {\dfrac{{1 + \sin x}}{{\sin x\left( {1 + \cos x} \right)}}} \,dx\]
To solve this integration we use a substitution method.
After substituting \[t = \tan \dfrac{x}{2}\] we find the value of \[\sin x\]and \[\cos x\] in terms of \[y\]
\[t = \tan \dfrac{x}{2}\]
On differentiating both sides with respect to \[x\].
\[dt = \dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx\]
Now converting sec trigonometry function in terms of tan trigonometry function by using the identity.
\[dt = \dfrac{1}{2}\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx\]
Now putting the value of \[\tan \dfrac{x}{2}\] in terms of \[t\].
\[\dfrac{{2dt}}{{1 + {\operatorname{t} ^2}}} = dx\]
Now using the formula of half angle in terms of tan trigonometry function.
\[\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{{{\tan }^2}\dfrac{x}{2} + 1}}\] and \[\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\]
Now putting the value of \[\tan \dfrac{x}{2}\] in terms of \[t\] in both the formulas.
\[\sin x = \dfrac{{2t}}{{{t^2} + 1}}\] and \[\cos x = \dfrac{{1 - {t^2}}}{{1 + {\operatorname{t} ^2}}}\]
Now putting all these values in the integration.
\[I = \int {\dfrac{{1 + \dfrac{{2t}}{{{t^2} + 1}}}}{{\dfrac{{2t}}{{{t^2} + 1}}\left( {1 + \dfrac{{1 - {t^2}}}{{1 + {\operatorname{t} ^2}}}} \right)}}} \,\dfrac{{2dt}}{{1 + {\operatorname{t} ^2}}}\]
Now on taking the LCM in numerator and denominator.
\[I = \int {\dfrac{{\dfrac{{1 + {\operatorname{t} ^2} + 2t}}{{{t^2} + 1}}}}{{\dfrac{{2t}}{{{t^2} + 1}}\left( {\dfrac{{1 + {\operatorname{t} ^2} + 1 - {t^2}}}{{1 + {\operatorname{t} ^2}}}} \right)}}} \,\dfrac{{2dt}}{{1 + {\operatorname{t} ^2}}}\]
On canceling the common terms.
\[I = \int {\dfrac{{1 + {\operatorname{t} ^2} + 2t}}{{2t}}} \,dt\]
Now splitting all these terms.
\[I = \int {\dfrac{1}{{2t}}dt + \int {\dfrac{{{t^2}}}{{2t}}dt + \int {\dfrac{{2t}}{{2t}}dt} } } \]
Now simplifying all these terms.
\[I = \dfrac{1}{2}\int {\dfrac{1}{t}dt + \dfrac{1}{2}\int {tdt + \int {dt} } } \]
Now integrating all the parts.
\[I = \dfrac{1}{2}\ln t + \dfrac{1}{2}\dfrac{{{t^2}}}{2} + t + c\]
Now again putting the value of \[t\] in terms of \[\tan \dfrac{x}{2}\]
\[I = \dfrac{1}{2}\ln \tan \dfrac{x}{2} + \dfrac{{{{\tan }^2}\dfrac{x}{2}}}{4} + \tan \dfrac{x}{2} + c\]
Here c is the constant of the integration.
The integration of \[\int {\dfrac{{1 + \sin x}}{{\sin x\left( {1 + \cos x} \right)}}} \,dx\] is-
\[I = \dfrac{1}{2}\ln \tan \dfrac{x}{2} + \dfrac{{{{\tan }^2}\dfrac{x}{2}}}{4} + \tan \dfrac{x}{2} + c\]
Note: In order to solve these types of questions students must have a knowledge of all the trigonometry identities and formulas and must have good practice to substitute the values. There are many places where students often make mistakes so take a look while solving the integration finding the values in terms of another variable.
Complete step by step answer:
Let \[I = \int {\dfrac{{1 + \sin x}}{{\sin x\left( {1 + \cos x} \right)}}} \,dx\]
To solve this integration we use a substitution method.
After substituting \[t = \tan \dfrac{x}{2}\] we find the value of \[\sin x\]and \[\cos x\] in terms of \[y\]
\[t = \tan \dfrac{x}{2}\]
On differentiating both sides with respect to \[x\].
\[dt = \dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx\]
Now converting sec trigonometry function in terms of tan trigonometry function by using the identity.
\[dt = \dfrac{1}{2}\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx\]
Now putting the value of \[\tan \dfrac{x}{2}\] in terms of \[t\].
\[\dfrac{{2dt}}{{1 + {\operatorname{t} ^2}}} = dx\]
Now using the formula of half angle in terms of tan trigonometry function.
\[\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{{{\tan }^2}\dfrac{x}{2} + 1}}\] and \[\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}\]
Now putting the value of \[\tan \dfrac{x}{2}\] in terms of \[t\] in both the formulas.
\[\sin x = \dfrac{{2t}}{{{t^2} + 1}}\] and \[\cos x = \dfrac{{1 - {t^2}}}{{1 + {\operatorname{t} ^2}}}\]
Now putting all these values in the integration.
\[I = \int {\dfrac{{1 + \dfrac{{2t}}{{{t^2} + 1}}}}{{\dfrac{{2t}}{{{t^2} + 1}}\left( {1 + \dfrac{{1 - {t^2}}}{{1 + {\operatorname{t} ^2}}}} \right)}}} \,\dfrac{{2dt}}{{1 + {\operatorname{t} ^2}}}\]
Now on taking the LCM in numerator and denominator.
\[I = \int {\dfrac{{\dfrac{{1 + {\operatorname{t} ^2} + 2t}}{{{t^2} + 1}}}}{{\dfrac{{2t}}{{{t^2} + 1}}\left( {\dfrac{{1 + {\operatorname{t} ^2} + 1 - {t^2}}}{{1 + {\operatorname{t} ^2}}}} \right)}}} \,\dfrac{{2dt}}{{1 + {\operatorname{t} ^2}}}\]
On canceling the common terms.
\[I = \int {\dfrac{{1 + {\operatorname{t} ^2} + 2t}}{{2t}}} \,dt\]
Now splitting all these terms.
\[I = \int {\dfrac{1}{{2t}}dt + \int {\dfrac{{{t^2}}}{{2t}}dt + \int {\dfrac{{2t}}{{2t}}dt} } } \]
Now simplifying all these terms.
\[I = \dfrac{1}{2}\int {\dfrac{1}{t}dt + \dfrac{1}{2}\int {tdt + \int {dt} } } \]
Now integrating all the parts.
\[I = \dfrac{1}{2}\ln t + \dfrac{1}{2}\dfrac{{{t^2}}}{2} + t + c\]
Now again putting the value of \[t\] in terms of \[\tan \dfrac{x}{2}\]
\[I = \dfrac{1}{2}\ln \tan \dfrac{x}{2} + \dfrac{{{{\tan }^2}\dfrac{x}{2}}}{4} + \tan \dfrac{x}{2} + c\]
Here c is the constant of the integration.
The integration of \[\int {\dfrac{{1 + \sin x}}{{\sin x\left( {1 + \cos x} \right)}}} \,dx\] is-
\[I = \dfrac{1}{2}\ln \tan \dfrac{x}{2} + \dfrac{{{{\tan }^2}\dfrac{x}{2}}}{4} + \tan \dfrac{x}{2} + c\]
Note: In order to solve these types of questions students must have a knowledge of all the trigonometry identities and formulas and must have good practice to substitute the values. There are many places where students often make mistakes so take a look while solving the integration finding the values in terms of another variable.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

