
How do you integrate \[\dfrac{{{x^4} + 1}}{{{x^3} + 2x}}\] using partial fractions?
Answer
535.5k+ views
Hint: We need to integrate the given equation by using the partial fractions. In order to use the partial fractions the power value of the numerator must be less than the power value of the denominator. Otherwise, we have to use a long division method to solve the problem.
Complete step-by-step answer:
Given,
Integrate \[\dfrac{{{x^4} + 1}}{{{x^3} + 2x}}\]
By using long division method, we get
\[\dfrac{{{x^4} + 1}}{{{x^3} + 2x}} = x - \dfrac{{2{x^2} - 1}}{{{x^3} + 2x}}\]
Take factoring out \[x\] from the denominator, we get
\[\dfrac{{2{x^2} - 1}}{{{x^3} + 2x}} = x - \dfrac{{2{x^2} - 1}}{{x({x^2} + 2)}}\]
By using the partial decomposition of \[\dfrac{{2{x^2} - 1}}{{x({x^2} + 2)}}\] and break into multiple factors,
\[\dfrac{{2{x^2} - 1}}{{x({x^2} + 2)}} = \dfrac{A}{x} + \dfrac{{Bx}}{{{x^2} + 2}}\] …………… \[(1)\]
By multiplying common denominator \[x({x^2} + 2)\] on both sides, we get
\[2{x^2} - 1 = A({x^2} + 2) + B{x^2}\] ………. \[(2)\]
To find the value of \[A\] and \[B\] by the factor value of \[x = 0,\] then put \[x = 1\] ,
If \[x = 0,\] substitute the equation \[(2)\] gives,
\[
2(0) - 1 = A(0 + 2) + B(0) \\
- 1 = 2A \\
A = \dfrac{{ - 1}}{2} \\
\] \[\]
By applying the value \[A\] in equation \[(2)\]
\[2{x^2} - 1 = - \dfrac{1}{2}({x^2} + 2) + B{x^2}\] …………. \[(3)\] \[\]
If \[x = 1\] , substitute in equation \[(3)\] gives,
\[
1 = - \dfrac{3}{2} + B \;
\]
To simplify, then we get
\[B = \dfrac{{2 + 3}}{2}\]
Then, the value of \[B = \dfrac{5}{2}\]
By substitute all the values into the equation \[(1)\] , Partial decomposition
\[
\dfrac{{2{x^2} - 1}}{{x({x^2} + 2)}} = x - \dfrac{{\left[ {\dfrac{{ - 1}}{2}} \right] }}{x} + \dfrac{{\dfrac{5}{2}x}}{{{x^2} + 2}} \\
\dfrac{{{x^4} - 1}}{{({x^3} + 2x)}} = x + \dfrac{{\dfrac{1}{2}}}{x} + \dfrac{{\dfrac{5}{2}x}}{{{x^2} + 2}} \;
\]
To integrating the above equation, we get
\[
\int {\left( {x + \dfrac{{\dfrac{1}{2}}}{x} + \dfrac{{\dfrac{5}{2}x}}{{{x^2} + 2}}} \right)dx} \\
\int {xdx + \int {\dfrac{{\dfrac{1}{2}}}{x}dx + \dfrac{5}{2}\int {\dfrac{x}{{{x^2} + 2}}dx} } } \;
\]
To simplify the integration,
\[\int {xdx + \dfrac{1}{2}\int {\dfrac{1}{x}dx + \dfrac{5}{2}\int {\left( {\dfrac{x}{{{x^2} + 2}}} \right)dx} } } \]
By apply the integral formula, we have
\[\dfrac{{{x^2}}}{2} + \dfrac{1}{2}In(x) + C + \dfrac{5}{2}\int {\left( {\dfrac{x}{{{x^2} + 2}}} \right)dx} \] …………. \[(4)\]
By substitute \[u\] on the last equation of above, we get
Let us consider,
\[u = {x^2} + 2\]
By differentiate \[u\] with respect to \[x\] , we get
\[
du = 2xdx \\
xdx = \dfrac{1}{2}du \;
\]
Now, \[\int {\left( {\dfrac{x}{{{x^2} + 2}}} \right)dx} = \int {\left( {\dfrac{1}{u}} \right)\dfrac{1}{2}du = \dfrac{1}{2}In(u) + C} \]
So, apply back the value of \[u = {x^2} + 2\] ,
\[\int {\left( {\dfrac{x}{{{x^2} + 2}}} \right)dx} = \dfrac{1}{2}In({x^2} + 2) + C\] ……….. \[(5)\]
By substitute the equation \[(5)\] in \[(4)\] , we get
\[\dfrac{{{x^2}}}{2} + \dfrac{1}{2}In(x) + C + \dfrac{5}{2}\left( {\dfrac{1}{2}In({x^2} + 2) + C} \right)\]
Hence, The final answer is \[\dfrac{{{x^2}}}{2} + \dfrac{1}{2}In(x) + C + \dfrac{5}{2}In\left( {{x^2} + 2} \right) + C\] .
So, the correct answer is “\[\dfrac{{{x^2}}}{2} + \dfrac{1}{2}In(x) + \dfrac{5}{2}In\left( {{x^2} + 2} \right) + C\] ”.
Note: We need to integrate the given equation by using the partial fractions. In order to use the partial fractions the power value of the numerator must be less than the power value of the denominator. Otherwise, we have to use a long division method to solve the problem and use some integration formula.
Complete step-by-step answer:
Given,
Integrate \[\dfrac{{{x^4} + 1}}{{{x^3} + 2x}}\]
By using long division method, we get
\[\dfrac{{{x^4} + 1}}{{{x^3} + 2x}} = x - \dfrac{{2{x^2} - 1}}{{{x^3} + 2x}}\]
Take factoring out \[x\] from the denominator, we get
\[\dfrac{{2{x^2} - 1}}{{{x^3} + 2x}} = x - \dfrac{{2{x^2} - 1}}{{x({x^2} + 2)}}\]
By using the partial decomposition of \[\dfrac{{2{x^2} - 1}}{{x({x^2} + 2)}}\] and break into multiple factors,
\[\dfrac{{2{x^2} - 1}}{{x({x^2} + 2)}} = \dfrac{A}{x} + \dfrac{{Bx}}{{{x^2} + 2}}\] …………… \[(1)\]
By multiplying common denominator \[x({x^2} + 2)\] on both sides, we get
\[2{x^2} - 1 = A({x^2} + 2) + B{x^2}\] ………. \[(2)\]
To find the value of \[A\] and \[B\] by the factor value of \[x = 0,\] then put \[x = 1\] ,
If \[x = 0,\] substitute the equation \[(2)\] gives,
\[
2(0) - 1 = A(0 + 2) + B(0) \\
- 1 = 2A \\
A = \dfrac{{ - 1}}{2} \\
\] \[\]
By applying the value \[A\] in equation \[(2)\]
\[2{x^2} - 1 = - \dfrac{1}{2}({x^2} + 2) + B{x^2}\] …………. \[(3)\] \[\]
If \[x = 1\] , substitute in equation \[(3)\] gives,
\[
1 = - \dfrac{3}{2} + B \;
\]
To simplify, then we get
\[B = \dfrac{{2 + 3}}{2}\]
Then, the value of \[B = \dfrac{5}{2}\]
By substitute all the values into the equation \[(1)\] , Partial decomposition
\[
\dfrac{{2{x^2} - 1}}{{x({x^2} + 2)}} = x - \dfrac{{\left[ {\dfrac{{ - 1}}{2}} \right] }}{x} + \dfrac{{\dfrac{5}{2}x}}{{{x^2} + 2}} \\
\dfrac{{{x^4} - 1}}{{({x^3} + 2x)}} = x + \dfrac{{\dfrac{1}{2}}}{x} + \dfrac{{\dfrac{5}{2}x}}{{{x^2} + 2}} \;
\]
To integrating the above equation, we get
\[
\int {\left( {x + \dfrac{{\dfrac{1}{2}}}{x} + \dfrac{{\dfrac{5}{2}x}}{{{x^2} + 2}}} \right)dx} \\
\int {xdx + \int {\dfrac{{\dfrac{1}{2}}}{x}dx + \dfrac{5}{2}\int {\dfrac{x}{{{x^2} + 2}}dx} } } \;
\]
To simplify the integration,
\[\int {xdx + \dfrac{1}{2}\int {\dfrac{1}{x}dx + \dfrac{5}{2}\int {\left( {\dfrac{x}{{{x^2} + 2}}} \right)dx} } } \]
By apply the integral formula, we have
\[\dfrac{{{x^2}}}{2} + \dfrac{1}{2}In(x) + C + \dfrac{5}{2}\int {\left( {\dfrac{x}{{{x^2} + 2}}} \right)dx} \] …………. \[(4)\]
By substitute \[u\] on the last equation of above, we get
Let us consider,
\[u = {x^2} + 2\]
By differentiate \[u\] with respect to \[x\] , we get
\[
du = 2xdx \\
xdx = \dfrac{1}{2}du \;
\]
Now, \[\int {\left( {\dfrac{x}{{{x^2} + 2}}} \right)dx} = \int {\left( {\dfrac{1}{u}} \right)\dfrac{1}{2}du = \dfrac{1}{2}In(u) + C} \]
So, apply back the value of \[u = {x^2} + 2\] ,
\[\int {\left( {\dfrac{x}{{{x^2} + 2}}} \right)dx} = \dfrac{1}{2}In({x^2} + 2) + C\] ……….. \[(5)\]
By substitute the equation \[(5)\] in \[(4)\] , we get
\[\dfrac{{{x^2}}}{2} + \dfrac{1}{2}In(x) + C + \dfrac{5}{2}\left( {\dfrac{1}{2}In({x^2} + 2) + C} \right)\]
Hence, The final answer is \[\dfrac{{{x^2}}}{2} + \dfrac{1}{2}In(x) + C + \dfrac{5}{2}In\left( {{x^2} + 2} \right) + C\] .
So, the correct answer is “\[\dfrac{{{x^2}}}{2} + \dfrac{1}{2}In(x) + \dfrac{5}{2}In\left( {{x^2} + 2} \right) + C\] ”.
Note: We need to integrate the given equation by using the partial fractions. In order to use the partial fractions the power value of the numerator must be less than the power value of the denominator. Otherwise, we have to use a long division method to solve the problem and use some integration formula.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

