
Integrate: $\dfrac{{\sin x}}{{\sin 2x + 2}}$ with respect to $x$.
Answer
496.5k+ views
Hint:The given question requires us to integrate a function of x with respect to x. We evaluate the given integral using the substitution method. We first simplify the function provided to us in the question and then split it into two parts for the ease of integration. Now, we substitute the denominators of both the rational functions in x as separate variables and do the integration further.
Complete step by step answer:
The given question requires us to integrate the function $\dfrac{{\sin x}}{{\sin 2x + 2}}$.
So, we have, \[\int {\dfrac{{\sin x}}{{\sin 2x + 2}}} dx\]
But, it is very difficult to integrate the function directly. So, we first split the function into two parts after simplifying a bit. So, we get,
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {\sin x + \cos x} \right) + \left( {\sin x - \cos x} \right)}}{{\sin 2x + 2}}} dx\]
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {\sin x + \cos x} \right)}}{{\sin 2x + 2}} + \dfrac{{\left( {\sin x - \cos x} \right)}}{{\sin 2x + 2}}} dx\]
Now, we know that ${\left( {\sin x + \cos x} \right)^2} = \sin 2x + 1$ and ${\left( {\cos x - \sin x} \right)^2} = 1 - \sin 2x$ . So, we get,
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {\sin x + \cos x} \right)}}{{3 - {{\left( {\cos x - \sin x} \right)}^2}}}dx - \dfrac{{\left( {\cos x - \sin x} \right)}}{{1 + {{\left( {\sin x + \cos x} \right)}^2}}}} dx\]
Separating both the integrals, we get,
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {\sin x + \cos x} \right)}}{{3 - {{\left( {\sin x - \cos x} \right)}^2}}}dx - \dfrac{1}{2}\int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{1 + {{\left( {\sin x + \cos x} \right)}^2}}}} } dx\]
Now, we assign $t = \sin x - \cos x$ and $u = \sin x + \cos x$.
So, we have, $dt = \left( {\sin x + \cos x} \right)dx$ and $du = \left( {\cos x - \sin x} \right)dx$
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{dt}}{{3 - {t^2}}} - \dfrac{1}{2}\int {\dfrac{{du}}{{1 + {u^2}}}} } \]
Now, we must know the special integral $\int {\dfrac{1}{{{a^2} + {x^2}}}} dx = {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + c$ and \[\int {\dfrac{1}{{{a^2} - {x^2}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{x + a}}{{x - a}}} \right|} \].
So, using these special integral, we get,
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{dt}}{{{{\left( {\sqrt 3 } \right)}^2} - {t^2}}} - \dfrac{1}{2}\int {\dfrac{{du}}{{1 + {u^2}}}} } \]
\[ \Rightarrow \dfrac{1}{2}\left( {\dfrac{1}{{2\sqrt 3 }}\log \left| {\dfrac{{t + \sqrt 3 }}{{t - \sqrt 3 }}} \right|} \right) - \dfrac{1}{2}{\tan ^{ - 1}}u + c\]
Substituting the value of t and u back in the expression, we get,
\[ \Rightarrow \dfrac{1}{2}\left( {\dfrac{1}{{2\sqrt 3 }}\log \left| {\dfrac{{t + \sqrt 3 }}{{t - \sqrt 3 }}} \right|} \right) - \dfrac{1}{2}{\tan ^{ - 1}}u + c\]
\[ \therefore \dfrac{1}{{4\sqrt 3 }}\log \left| {\dfrac{{\sin x - \cos x + \sqrt 3 }}{{\sin x - \cos x - \sqrt 3 }}} \right| - \dfrac{1}{2}{\tan ^{ - 1}}\left( {\sin x + \cos x} \right) + c\]
where $c$ is any arbitrary constant.
So, the integral of $\dfrac{{\sin x}}{{\sin 2x + 2}}$ with respect to x is \[\dfrac{1}{{4\sqrt 3 }}\log \left| {\dfrac{{\sin x - \cos x + \sqrt 3 }}{{\sin x - \cos x - \sqrt 3 }}} \right| - \dfrac{1}{2}{\tan ^{ - 1}}\left( {\sin x + \cos x} \right) + c\] where $c$ is any arbitrary constant.
Note:The indefinite integrals of certain functions may have more than one answer in different forms. However, all these forms are correct and interchangeable into one another. Indefinite integral gives us the family of curves as we don’t know the exact value of the arbitrary constant. We should have an open mind while thinking of a method to solve the given integral.
Complete step by step answer:
The given question requires us to integrate the function $\dfrac{{\sin x}}{{\sin 2x + 2}}$.
So, we have, \[\int {\dfrac{{\sin x}}{{\sin 2x + 2}}} dx\]
But, it is very difficult to integrate the function directly. So, we first split the function into two parts after simplifying a bit. So, we get,
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {\sin x + \cos x} \right) + \left( {\sin x - \cos x} \right)}}{{\sin 2x + 2}}} dx\]
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {\sin x + \cos x} \right)}}{{\sin 2x + 2}} + \dfrac{{\left( {\sin x - \cos x} \right)}}{{\sin 2x + 2}}} dx\]
Now, we know that ${\left( {\sin x + \cos x} \right)^2} = \sin 2x + 1$ and ${\left( {\cos x - \sin x} \right)^2} = 1 - \sin 2x$ . So, we get,
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {\sin x + \cos x} \right)}}{{3 - {{\left( {\cos x - \sin x} \right)}^2}}}dx - \dfrac{{\left( {\cos x - \sin x} \right)}}{{1 + {{\left( {\sin x + \cos x} \right)}^2}}}} dx\]
Separating both the integrals, we get,
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {\sin x + \cos x} \right)}}{{3 - {{\left( {\sin x - \cos x} \right)}^2}}}dx - \dfrac{1}{2}\int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{1 + {{\left( {\sin x + \cos x} \right)}^2}}}} } dx\]
Now, we assign $t = \sin x - \cos x$ and $u = \sin x + \cos x$.
So, we have, $dt = \left( {\sin x + \cos x} \right)dx$ and $du = \left( {\cos x - \sin x} \right)dx$
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{dt}}{{3 - {t^2}}} - \dfrac{1}{2}\int {\dfrac{{du}}{{1 + {u^2}}}} } \]
Now, we must know the special integral $\int {\dfrac{1}{{{a^2} + {x^2}}}} dx = {\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + c$ and \[\int {\dfrac{1}{{{a^2} - {x^2}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{x + a}}{{x - a}}} \right|} \].
So, using these special integral, we get,
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{dt}}{{{{\left( {\sqrt 3 } \right)}^2} - {t^2}}} - \dfrac{1}{2}\int {\dfrac{{du}}{{1 + {u^2}}}} } \]
\[ \Rightarrow \dfrac{1}{2}\left( {\dfrac{1}{{2\sqrt 3 }}\log \left| {\dfrac{{t + \sqrt 3 }}{{t - \sqrt 3 }}} \right|} \right) - \dfrac{1}{2}{\tan ^{ - 1}}u + c\]
Substituting the value of t and u back in the expression, we get,
\[ \Rightarrow \dfrac{1}{2}\left( {\dfrac{1}{{2\sqrt 3 }}\log \left| {\dfrac{{t + \sqrt 3 }}{{t - \sqrt 3 }}} \right|} \right) - \dfrac{1}{2}{\tan ^{ - 1}}u + c\]
\[ \therefore \dfrac{1}{{4\sqrt 3 }}\log \left| {\dfrac{{\sin x - \cos x + \sqrt 3 }}{{\sin x - \cos x - \sqrt 3 }}} \right| - \dfrac{1}{2}{\tan ^{ - 1}}\left( {\sin x + \cos x} \right) + c\]
where $c$ is any arbitrary constant.
So, the integral of $\dfrac{{\sin x}}{{\sin 2x + 2}}$ with respect to x is \[\dfrac{1}{{4\sqrt 3 }}\log \left| {\dfrac{{\sin x - \cos x + \sqrt 3 }}{{\sin x - \cos x - \sqrt 3 }}} \right| - \dfrac{1}{2}{\tan ^{ - 1}}\left( {\sin x + \cos x} \right) + c\] where $c$ is any arbitrary constant.
Note:The indefinite integrals of certain functions may have more than one answer in different forms. However, all these forms are correct and interchangeable into one another. Indefinite integral gives us the family of curves as we don’t know the exact value of the arbitrary constant. We should have an open mind while thinking of a method to solve the given integral.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

