
What is the integral of ${\sin ^2}\left( x \right){\cos ^4}\left( x \right)$ ?
Answer
458.4k+ views
Hint: Generally, the integrals are classified into two types, definite integral and indefinite integral: a definite integral contains upper and lower limits whereas an indefinite integral does not contain upper and lower limits.
Here, we are given an indefinite integral and we are asked to calculate the value of$\int {{{\sin }^2}\left( x \right){{\cos }^4}\left( x \right)} dx$
Formula to be used:
Some formulae that we need to apply in the solution are as follows.
$\cos 2\theta = 1 - 2{\sin ^2}\theta $
$\cos 2\theta = 2{\cos ^2}\theta - 1$
$1 - {\cos ^2}\theta = {\sin ^2}2\theta $
$\int {dx} = x + C$
$\int {\cos xdx = } \sin x + C$
$\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C$
Complete step by step answer:
First, let us simplify ${\sin ^2}\left( x \right){\cos ^4}\left( x \right)$
We know that $\cos 2x = 1 - 2{\sin ^2}x$
$ \Rightarrow 2{\sin ^2}x = 1 - \cos 2x$
$ \Rightarrow {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}$ …………$\left( 1 \right)$
Also, we have $\cos 2x = 2{\cos ^2}x - 1$
$ \Rightarrow \cos 2x + 1 = 2{\cos ^2}x$
$ \Rightarrow {\cos ^2}x = \dfrac{{\cos 2x + 1}}{2}$ ………..$\left( 2 \right)$
Now, we shall substitute the equations$\left( 1 \right)$and$\left( 2 \right)$in ${\sin ^2}\left( x \right){\cos ^4}\left( x \right)$
Thus, ${\sin ^2}\left( x \right){\cos ^4}\left( x \right) = \dfrac{{1 - \cos 2x}}{2}{\left( {\dfrac{{\cos 2x + 1}}{2}} \right)^2}$
$ = \dfrac{1}{{2 \times 4}}\left( {1 - \cos 2x} \right)\left( {1 + \cos 2x} \right)\left( {1 + \cos 2x} \right)$
$ = \dfrac{1}{8}\left( {1 - {{\cos }^2}2x} \right)\left( {1 + \cos 2x} \right)$
Now, we shall apply $1 - {\cos ^2}\theta = {\sin ^2}2\theta $.
Thus, we get ${\sin ^2}\left( x \right){\cos ^4}\left( x \right) = \dfrac{1}{8}{\sin ^2}2x\left( {1 + \cos 2x} \right)$
$ = \dfrac{1}{8}{\sin ^2}2x + \dfrac{1}{8}{\sin ^2}2x\cos 2x$
Now, we shall apply the integral on both sides.
The addition rule of indefinite integral states that the sum of two functions is the sum of the So, we need to apply the addition rule.
$\int {{{\sin }^2}\left( x \right){{\cos }^4}\left( x \right)} dx = \int {\left( {\dfrac{1}{8}{{\sin }^2}2x + \dfrac{1}{8}{{\sin }^2}2x\cos 2x} \right)} dx$
$ = \dfrac{1}{8}\int {{{\sin }^2}2xdx + \dfrac{1}{8}\int {{{\sin }^2}2x\cos 2x} } dx$ …………..$\left( 3 \right)$
Let us consider ${I_1} = \dfrac{1}{8}\int {{{\sin }^2}} 2xdx$ and${I_2} = \dfrac{1}{8}\int {{{\sin }^2}} 2x\cos 2xdx$, then we need to solve them separately.
${I_1} = \dfrac{1}{8}\int {{{\sin }^2}} 2xdx$
Now, we shall apply${\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}$
$ \Rightarrow {I_1} = \dfrac{1}{8}\int {\dfrac{{1 - \cos 2\left( {2x} \right)}}{2}} dx$
$ \Rightarrow {I_1} = \dfrac{1}{8}\int {\dfrac{{1 - \cos 4x}}{2}} dx$
$ \Rightarrow {I_1} = \dfrac{1}{8} \times \dfrac{1}{2}\int {\left( {1 - \cos 4x} \right)} dx$
\[ \Rightarrow {I_1} = \dfrac{1}{{16}}\left[ {\int {dx - \int {\cos 4xdx} } } \right]\]
Now, we need to apply the formulae$\int {dx} = x + C$ and$\int {\cos xdx = } \sin x + C$
\[ \Rightarrow {I_1} = \dfrac{1}{{16}}\left[ {x - \dfrac{{\sin 4x}}{4}} \right] + {C_1}\] where ${C_1}$ is the constant of integration………………..$\left( 4 \right)$
Consider${I_2} = \dfrac{1}{8}\int {{{\sin }^2}} 2x\cos 2xdx$
${I_2} = \dfrac{1}{8}\int {\left( {\cos 2x} \right){{\sin }^2}} 2xdx$
Let $t = \sin 2x$
Now, differentiate $t = \sin 2x$with respect to$x$.
$dt = 2\cos 2xdx$
$ \Rightarrow \cos 2xdx = \dfrac{{dt}}{2}$
Now, ${I_2} = \dfrac{1}{8}\int {\left( {\cos 2x} \right){{\sin }^2}} 2xdx$becomes,
\[{I_2} = \dfrac{1}{8}\int {{t^2}\dfrac{{dt}}{2}} \]
$ \Rightarrow {I_2} = \dfrac{1}{8} \times \dfrac{1}{2}\int {{t^2}dt} $
$ \Rightarrow {I_2} = \dfrac{1}{{16}}\int {{t^2}dt} $
$ \Rightarrow {I_2} = \dfrac{1}{{16}} \times \dfrac{{{t^3}}}{3} + {C_2}$ (Here we have applied$\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C$)
$ \Rightarrow {I_2} = \dfrac{1}{{16}} \times \dfrac{{{{\sin }^3}2x}}{3} + {C_2}$ where${C_2}$ is the constant of integration ….$\left( 5 \right)$
Now, we shall substitute the equations$\left( 4 \right)$ and $\left( 5 \right)$in the equation$\left( 3 \right)$.
$\int {{{\sin }^2}\left( x \right){{\cos }^4}\left( x \right)} dx = \dfrac{1}{{16}}\left[ {x - \dfrac{{\sin 4x}}{4}} \right] + \dfrac{1}{{16}} \times \dfrac{{{{\sin }^3}2x}}{3} + C$ where$C$ is the constant of integration.
\[ = \dfrac{x}{{16}} - \dfrac{{\sin 4x}}{{64}} + \dfrac{{{{\sin }^3}2x}}{{48}} + C\]
Hence, $\int {{{\sin }^2}\left( x \right){{\cos }^4}\left( x \right)} dx = \dfrac{x}{{16}} - \dfrac{{\sin 4x}}{{64}} + \dfrac{{{{\sin }^3}2x}}{{48}} + C$
Note:
We all know that differentiation is the process of finding the derivation of the functions whereas process integration is to find the antiderivative of a function and hence, these two processes are said to be inverse to each other. That means, integration is the inverse process of differentiation and also known as the anti-differentiation.
Here, we are given an indefinite integral and we are asked to calculate the value of$\int {{{\sin }^2}\left( x \right){{\cos }^4}\left( x \right)} dx$
Formula to be used:
Some formulae that we need to apply in the solution are as follows.
$\cos 2\theta = 1 - 2{\sin ^2}\theta $
$\cos 2\theta = 2{\cos ^2}\theta - 1$
$1 - {\cos ^2}\theta = {\sin ^2}2\theta $
$\int {dx} = x + C$
$\int {\cos xdx = } \sin x + C$
$\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C$
Complete step by step answer:
First, let us simplify ${\sin ^2}\left( x \right){\cos ^4}\left( x \right)$
We know that $\cos 2x = 1 - 2{\sin ^2}x$
$ \Rightarrow 2{\sin ^2}x = 1 - \cos 2x$
$ \Rightarrow {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}$ …………$\left( 1 \right)$
Also, we have $\cos 2x = 2{\cos ^2}x - 1$
$ \Rightarrow \cos 2x + 1 = 2{\cos ^2}x$
$ \Rightarrow {\cos ^2}x = \dfrac{{\cos 2x + 1}}{2}$ ………..$\left( 2 \right)$
Now, we shall substitute the equations$\left( 1 \right)$and$\left( 2 \right)$in ${\sin ^2}\left( x \right){\cos ^4}\left( x \right)$
Thus, ${\sin ^2}\left( x \right){\cos ^4}\left( x \right) = \dfrac{{1 - \cos 2x}}{2}{\left( {\dfrac{{\cos 2x + 1}}{2}} \right)^2}$
$ = \dfrac{1}{{2 \times 4}}\left( {1 - \cos 2x} \right)\left( {1 + \cos 2x} \right)\left( {1 + \cos 2x} \right)$
$ = \dfrac{1}{8}\left( {1 - {{\cos }^2}2x} \right)\left( {1 + \cos 2x} \right)$
Now, we shall apply $1 - {\cos ^2}\theta = {\sin ^2}2\theta $.
Thus, we get ${\sin ^2}\left( x \right){\cos ^4}\left( x \right) = \dfrac{1}{8}{\sin ^2}2x\left( {1 + \cos 2x} \right)$
$ = \dfrac{1}{8}{\sin ^2}2x + \dfrac{1}{8}{\sin ^2}2x\cos 2x$
Now, we shall apply the integral on both sides.
The addition rule of indefinite integral states that the sum of two functions is the sum of the So, we need to apply the addition rule.
$\int {{{\sin }^2}\left( x \right){{\cos }^4}\left( x \right)} dx = \int {\left( {\dfrac{1}{8}{{\sin }^2}2x + \dfrac{1}{8}{{\sin }^2}2x\cos 2x} \right)} dx$
$ = \dfrac{1}{8}\int {{{\sin }^2}2xdx + \dfrac{1}{8}\int {{{\sin }^2}2x\cos 2x} } dx$ …………..$\left( 3 \right)$
Let us consider ${I_1} = \dfrac{1}{8}\int {{{\sin }^2}} 2xdx$ and${I_2} = \dfrac{1}{8}\int {{{\sin }^2}} 2x\cos 2xdx$, then we need to solve them separately.
${I_1} = \dfrac{1}{8}\int {{{\sin }^2}} 2xdx$
Now, we shall apply${\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}$
$ \Rightarrow {I_1} = \dfrac{1}{8}\int {\dfrac{{1 - \cos 2\left( {2x} \right)}}{2}} dx$
$ \Rightarrow {I_1} = \dfrac{1}{8}\int {\dfrac{{1 - \cos 4x}}{2}} dx$
$ \Rightarrow {I_1} = \dfrac{1}{8} \times \dfrac{1}{2}\int {\left( {1 - \cos 4x} \right)} dx$
\[ \Rightarrow {I_1} = \dfrac{1}{{16}}\left[ {\int {dx - \int {\cos 4xdx} } } \right]\]
Now, we need to apply the formulae$\int {dx} = x + C$ and$\int {\cos xdx = } \sin x + C$
\[ \Rightarrow {I_1} = \dfrac{1}{{16}}\left[ {x - \dfrac{{\sin 4x}}{4}} \right] + {C_1}\] where ${C_1}$ is the constant of integration………………..$\left( 4 \right)$
Consider${I_2} = \dfrac{1}{8}\int {{{\sin }^2}} 2x\cos 2xdx$
${I_2} = \dfrac{1}{8}\int {\left( {\cos 2x} \right){{\sin }^2}} 2xdx$
Let $t = \sin 2x$
Now, differentiate $t = \sin 2x$with respect to$x$.
$dt = 2\cos 2xdx$
$ \Rightarrow \cos 2xdx = \dfrac{{dt}}{2}$
Now, ${I_2} = \dfrac{1}{8}\int {\left( {\cos 2x} \right){{\sin }^2}} 2xdx$becomes,
\[{I_2} = \dfrac{1}{8}\int {{t^2}\dfrac{{dt}}{2}} \]
$ \Rightarrow {I_2} = \dfrac{1}{8} \times \dfrac{1}{2}\int {{t^2}dt} $
$ \Rightarrow {I_2} = \dfrac{1}{{16}}\int {{t^2}dt} $
$ \Rightarrow {I_2} = \dfrac{1}{{16}} \times \dfrac{{{t^3}}}{3} + {C_2}$ (Here we have applied$\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C$)
$ \Rightarrow {I_2} = \dfrac{1}{{16}} \times \dfrac{{{{\sin }^3}2x}}{3} + {C_2}$ where${C_2}$ is the constant of integration ….$\left( 5 \right)$
Now, we shall substitute the equations$\left( 4 \right)$ and $\left( 5 \right)$in the equation$\left( 3 \right)$.
$\int {{{\sin }^2}\left( x \right){{\cos }^4}\left( x \right)} dx = \dfrac{1}{{16}}\left[ {x - \dfrac{{\sin 4x}}{4}} \right] + \dfrac{1}{{16}} \times \dfrac{{{{\sin }^3}2x}}{3} + C$ where$C$ is the constant of integration.
\[ = \dfrac{x}{{16}} - \dfrac{{\sin 4x}}{{64}} + \dfrac{{{{\sin }^3}2x}}{{48}} + C\]
Hence, $\int {{{\sin }^2}\left( x \right){{\cos }^4}\left( x \right)} dx = \dfrac{x}{{16}} - \dfrac{{\sin 4x}}{{64}} + \dfrac{{{{\sin }^3}2x}}{{48}} + C$
Note:
We all know that differentiation is the process of finding the derivation of the functions whereas process integration is to find the antiderivative of a function and hence, these two processes are said to be inverse to each other. That means, integration is the inverse process of differentiation and also known as the anti-differentiation.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

