
Integral \[\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx}\] is equal to
A. 0,
B. \[-\dfrac{1}{\pi }\],
C. \[\dfrac{1}{\pi }\],
D. \[\dfrac{2}{\pi }\].
Answer
559.8k+ views
Hint: We start solving the problem by taking \[2\pi x=t\] and converting $dx$ in terms of $dt$. We then substitute the obtained results and use the properties of modulus functions in place of integrand to proceed through the problem. We then use the results $\int{\sin xdx=-\cos x+C}$, $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=\left[ f\left( x \right) \right]_{a}^{b}=f\left( b \right)-f\left( a \right)}$ and make necessary calculations to get the required result.
Complete step by step answer:
As mentioned in the question, we have to find the value of the definite integral \[\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx}\].
Now, first we will substitute the integrand as follows
\[2\pi x=t\].
Differentiating on both sides, we get.
\[d\left( 2\pi x \right)=dt\].
\[\Rightarrow 2\pi dx=dt\].
\[\Rightarrow dx=\dfrac{dt}{2\pi }\].
Now, on doing these changes, the integral transforms into the following \[\int\limits_{0}^{2\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}\].
We know the property of modulus function as $\left| x \right|=\left\{ \begin{matrix}
x\text{, if }x>0 \\
0\text{, if }x=0 \\
-x\text{, if }x<0 \\
\end{matrix} \right.$. We use this property for the integrand.
We know that the sine function becomes positive from 0 to \[\pi \] negative from \[\pi \] to \[2\pi \].
So, now, the value of this integral can be evaluated as follows
\[=\int\limits_{0}^{\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}+\int\limits_{\pi }^{2\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}\].
\[=\dfrac{1}{2\pi }\times \left( \int\limits_{0}^{\pi }{\sin tdt}+\int\limits_{\pi }^{2\pi }{\left( -\sin t \right)dt} \right)\].
\[=\dfrac{1}{2\pi }\times \left( \int\limits_{0}^{\pi }{\sin tdt}-\int\limits_{\pi }^{2\pi }{\sin tdt} \right)\] ---(1).
We know that $\int{\sin xdx=-\cos x+C}$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=\left[ f\left( x \right) \right]_{a}^{b}=f\left( b \right)-f\left( a \right)}$. We use this result in equation (1).
\[=\dfrac{1}{2\pi }\times \left( \left[ -\cos t \right]_{0}^{\pi }-\left[ -\cos t \right]_{\pi }^{2\pi } \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ -\cos \pi -\left( -\cos 0 \right) \right]-\left[ -\cos 2\pi -\left( -\cos \pi \right) \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ -\left( -1 \right)-\left( -1 \right) \right]-\left[ -1-\left( -\left( -1 \right) \right) \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ 1+1 \right]-\left[ -1-1 \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ 2 \right]-\left[ -2 \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( 4 \right)\].
\[=\dfrac{2}{\pi }\].
∴ The value of \[\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx}\] is \[\dfrac{2}{\pi }\].
So, the correct answer is “Option D”.
Note: We can also solve the problem by using the property of the periodic function. From the graph of $\left| \sin x \right|$, we can see that the repetition in the values of y in the curve. So, we can take limits from 0 to $\pi $ for getting the result. We know that for a periodic function f of period P with $n=kP$ is $\int\limits_{o}^{n}{f\left( x \right)dx=k\int\limits_{0}^{p}{f\left( x \right)dx}}$ to use for the integrand.
Complete step by step answer:
As mentioned in the question, we have to find the value of the definite integral \[\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx}\].
Now, first we will substitute the integrand as follows
\[2\pi x=t\].
Differentiating on both sides, we get.
\[d\left( 2\pi x \right)=dt\].
\[\Rightarrow 2\pi dx=dt\].
\[\Rightarrow dx=\dfrac{dt}{2\pi }\].
Now, on doing these changes, the integral transforms into the following \[\int\limits_{0}^{2\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}\].
We know the property of modulus function as $\left| x \right|=\left\{ \begin{matrix}
x\text{, if }x>0 \\
0\text{, if }x=0 \\
-x\text{, if }x<0 \\
\end{matrix} \right.$. We use this property for the integrand.
We know that the sine function becomes positive from 0 to \[\pi \] negative from \[\pi \] to \[2\pi \].
So, now, the value of this integral can be evaluated as follows
\[=\int\limits_{0}^{\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}+\int\limits_{\pi }^{2\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}\].
\[=\dfrac{1}{2\pi }\times \left( \int\limits_{0}^{\pi }{\sin tdt}+\int\limits_{\pi }^{2\pi }{\left( -\sin t \right)dt} \right)\].
\[=\dfrac{1}{2\pi }\times \left( \int\limits_{0}^{\pi }{\sin tdt}-\int\limits_{\pi }^{2\pi }{\sin tdt} \right)\] ---(1).
We know that $\int{\sin xdx=-\cos x+C}$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=\left[ f\left( x \right) \right]_{a}^{b}=f\left( b \right)-f\left( a \right)}$. We use this result in equation (1).
\[=\dfrac{1}{2\pi }\times \left( \left[ -\cos t \right]_{0}^{\pi }-\left[ -\cos t \right]_{\pi }^{2\pi } \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ -\cos \pi -\left( -\cos 0 \right) \right]-\left[ -\cos 2\pi -\left( -\cos \pi \right) \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ -\left( -1 \right)-\left( -1 \right) \right]-\left[ -1-\left( -\left( -1 \right) \right) \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ 1+1 \right]-\left[ -1-1 \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ 2 \right]-\left[ -2 \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( 4 \right)\].
\[=\dfrac{2}{\pi }\].
∴ The value of \[\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx}\] is \[\dfrac{2}{\pi }\].
So, the correct answer is “Option D”.
Note: We can also solve the problem by using the property of the periodic function. From the graph of $\left| \sin x \right|$, we can see that the repetition in the values of y in the curve. So, we can take limits from 0 to $\pi $ for getting the result. We know that for a periodic function f of period P with $n=kP$ is $\int\limits_{o}^{n}{f\left( x \right)dx=k\int\limits_{0}^{p}{f\left( x \right)dx}}$ to use for the integrand.
Recently Updated Pages
What are the powers and functions of the Parliamen class 12 social science CBSE

Draw the structures of fructose for Haworth projection class 12 chemistry CBSE

Derive Braggs equation class 12 chemistry CBSE

Judicial review in Indian Constitution is based on class 12 social science CBSE

The area of triangle whose vertices are 1 2 3 2 5 1 class 12 maths CBSE

The maximum kinetic energy of photoelectrons emitted class 12 physics CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

