
Integral \[\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx}\] is equal to
A. 0,
B. \[-\dfrac{1}{\pi }\],
C. \[\dfrac{1}{\pi }\],
D. \[\dfrac{2}{\pi }\].
Answer
560.7k+ views
Hint: We start solving the problem by taking \[2\pi x=t\] and converting $dx$ in terms of $dt$. We then substitute the obtained results and use the properties of modulus functions in place of integrand to proceed through the problem. We then use the results $\int{\sin xdx=-\cos x+C}$, $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=\left[ f\left( x \right) \right]_{a}^{b}=f\left( b \right)-f\left( a \right)}$ and make necessary calculations to get the required result.
Complete step by step answer:
As mentioned in the question, we have to find the value of the definite integral \[\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx}\].
Now, first we will substitute the integrand as follows
\[2\pi x=t\].
Differentiating on both sides, we get.
\[d\left( 2\pi x \right)=dt\].
\[\Rightarrow 2\pi dx=dt\].
\[\Rightarrow dx=\dfrac{dt}{2\pi }\].
Now, on doing these changes, the integral transforms into the following \[\int\limits_{0}^{2\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}\].
We know the property of modulus function as $\left| x \right|=\left\{ \begin{matrix}
x\text{, if }x>0 \\
0\text{, if }x=0 \\
-x\text{, if }x<0 \\
\end{matrix} \right.$. We use this property for the integrand.
We know that the sine function becomes positive from 0 to \[\pi \] negative from \[\pi \] to \[2\pi \].
So, now, the value of this integral can be evaluated as follows
\[=\int\limits_{0}^{\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}+\int\limits_{\pi }^{2\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}\].
\[=\dfrac{1}{2\pi }\times \left( \int\limits_{0}^{\pi }{\sin tdt}+\int\limits_{\pi }^{2\pi }{\left( -\sin t \right)dt} \right)\].
\[=\dfrac{1}{2\pi }\times \left( \int\limits_{0}^{\pi }{\sin tdt}-\int\limits_{\pi }^{2\pi }{\sin tdt} \right)\] ---(1).
We know that $\int{\sin xdx=-\cos x+C}$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=\left[ f\left( x \right) \right]_{a}^{b}=f\left( b \right)-f\left( a \right)}$. We use this result in equation (1).
\[=\dfrac{1}{2\pi }\times \left( \left[ -\cos t \right]_{0}^{\pi }-\left[ -\cos t \right]_{\pi }^{2\pi } \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ -\cos \pi -\left( -\cos 0 \right) \right]-\left[ -\cos 2\pi -\left( -\cos \pi \right) \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ -\left( -1 \right)-\left( -1 \right) \right]-\left[ -1-\left( -\left( -1 \right) \right) \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ 1+1 \right]-\left[ -1-1 \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ 2 \right]-\left[ -2 \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( 4 \right)\].
\[=\dfrac{2}{\pi }\].
∴ The value of \[\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx}\] is \[\dfrac{2}{\pi }\].
So, the correct answer is “Option D”.
Note: We can also solve the problem by using the property of the periodic function. From the graph of $\left| \sin x \right|$, we can see that the repetition in the values of y in the curve. So, we can take limits from 0 to $\pi $ for getting the result. We know that for a periodic function f of period P with $n=kP$ is $\int\limits_{o}^{n}{f\left( x \right)dx=k\int\limits_{0}^{p}{f\left( x \right)dx}}$ to use for the integrand.
Complete step by step answer:
As mentioned in the question, we have to find the value of the definite integral \[\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx}\].
Now, first we will substitute the integrand as follows
\[2\pi x=t\].
Differentiating on both sides, we get.
\[d\left( 2\pi x \right)=dt\].
\[\Rightarrow 2\pi dx=dt\].
\[\Rightarrow dx=\dfrac{dt}{2\pi }\].
Now, on doing these changes, the integral transforms into the following \[\int\limits_{0}^{2\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}\].
We know the property of modulus function as $\left| x \right|=\left\{ \begin{matrix}
x\text{, if }x>0 \\
0\text{, if }x=0 \\
-x\text{, if }x<0 \\
\end{matrix} \right.$. We use this property for the integrand.
We know that the sine function becomes positive from 0 to \[\pi \] negative from \[\pi \] to \[2\pi \].
So, now, the value of this integral can be evaluated as follows
\[=\int\limits_{0}^{\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}+\int\limits_{\pi }^{2\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}\].
\[=\dfrac{1}{2\pi }\times \left( \int\limits_{0}^{\pi }{\sin tdt}+\int\limits_{\pi }^{2\pi }{\left( -\sin t \right)dt} \right)\].
\[=\dfrac{1}{2\pi }\times \left( \int\limits_{0}^{\pi }{\sin tdt}-\int\limits_{\pi }^{2\pi }{\sin tdt} \right)\] ---(1).
We know that $\int{\sin xdx=-\cos x+C}$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=\left[ f\left( x \right) \right]_{a}^{b}=f\left( b \right)-f\left( a \right)}$. We use this result in equation (1).
\[=\dfrac{1}{2\pi }\times \left( \left[ -\cos t \right]_{0}^{\pi }-\left[ -\cos t \right]_{\pi }^{2\pi } \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ -\cos \pi -\left( -\cos 0 \right) \right]-\left[ -\cos 2\pi -\left( -\cos \pi \right) \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ -\left( -1 \right)-\left( -1 \right) \right]-\left[ -1-\left( -\left( -1 \right) \right) \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ 1+1 \right]-\left[ -1-1 \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( \left[ 2 \right]-\left[ -2 \right] \right)\].
\[=\dfrac{1}{2\pi }\times \left( 4 \right)\].
\[=\dfrac{2}{\pi }\].
∴ The value of \[\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx}\] is \[\dfrac{2}{\pi }\].
So, the correct answer is “Option D”.
Note: We can also solve the problem by using the property of the periodic function. From the graph of $\left| \sin x \right|$, we can see that the repetition in the values of y in the curve. So, we can take limits from 0 to $\pi $ for getting the result. We know that for a periodic function f of period P with $n=kP$ is $\int\limits_{o}^{n}{f\left( x \right)dx=k\int\limits_{0}^{p}{f\left( x \right)dx}}$ to use for the integrand.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

