
$\int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx \\ $
$
A.\dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
B.\dfrac{3}{2}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
C.\dfrac{{ - 2}}{3}{\cos ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
D.\dfrac{3}{2}{\cos ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
$
Answer
576k+ views
Hint:
The given function is indefinite since there is no limit given. The indefinite integral of a function is a differentiable function F whose derivative is equal to the original function f. The first fundamental theorem of calculus allows definite integrals to be computed in terms of indefinite integrals.
In the given function, we will try to bring all the identity in the same form, and then we will use the trigonometric identity \[1 - {\cos ^2}\theta = {\sin ^2}\theta \] and we further reduce the function and then it is integrated.
Complete step by step solution:
Let us consider that $I = \int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx$
The above equation can also be written by taking $\cos x$ as common from both the terms in the numerator as
$
I = \int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{\cos x(1 - {{\cos }^2}x)}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} } dx - - - - (i) \\
$
Now, let us consider that $u = {\cos ^{\dfrac{3}{2}}}x - - - - (ii)$
Differentiate the equation (ii) with respect to x as:
$
\dfrac{d}{{dx}}(u) = \dfrac{d}{{dx}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) \\
\dfrac{{du}}{{dx}} = \dfrac{3}{2}{\cos ^{\left( {\dfrac{3}{2} - 1} \right)}}\left( { - \sin x} \right) \\
du = \dfrac{{ - 3\sin x\sqrt {\cos x} }}{2}dx \\
dx = \dfrac{{ - 2}}{{3\sin x\sqrt {\cos x} }}du - - - - (iii) \\
$
Substituting the value of ‘dx’ obtained in equation (iii) in the equation (i) we get,
$
I = \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} \times } \dfrac{{ - 2}}{{3\sin x\sqrt {\cos x} }}du \\
= \dfrac{{ - 2}}{3}\int {\dfrac{{\sin x}}{{\sin x}}\sqrt {\dfrac{{\cos x}}{{\cos x\left( {1 - {{\cos }^3}x} \right)}}} } du - - - - (iv) \\
$
Again, substitute the values of the equation (ii) in the equation (iv) we get
$
I = \dfrac{{ - 2}}{3}\int {\dfrac{{\sin x}}{{\sin x}}\sqrt {\dfrac{{\cos x}}{{\cos x\left( {1 - {{\cos }^3}x} \right)}}} } du \\
= \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {{\cos }^3}x}}} } \\
= \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {u^2}}}} du} - - - - (v){\text{ }}\left[ {u = {{\cos }^{\dfrac{3}{2}}}x \Rightarrow {{\cos }^3}x = {u^2}} \right] \\
$
Using the definite integral formula \[\int {\dfrac{1}{{\sqrt {1 - {a^2}} }} = {{\sin }^{ - 1}}a} \] in the equation (v) we get
$
I = \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {u^2}}}} du} \\
= \dfrac{{ - 2}}{3}\left( {{{\sin }^1}u} \right) + c - - - - (vi) \\
$
Now, substitute the value of $ u $ from the equation (ii) we get
$
I = \dfrac{{ - 2}}{3}\left( {{{\sin }^1}u} \right) + c \\
= \dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
$
Hence, $\int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx = \dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c$
Option A is correct.
Note:
While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
The given function is indefinite since there is no limit given. The indefinite integral of a function is a differentiable function F whose derivative is equal to the original function f. The first fundamental theorem of calculus allows definite integrals to be computed in terms of indefinite integrals.
In the given function, we will try to bring all the identity in the same form, and then we will use the trigonometric identity \[1 - {\cos ^2}\theta = {\sin ^2}\theta \] and we further reduce the function and then it is integrated.
Complete step by step solution:
Let us consider that $I = \int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx$
The above equation can also be written by taking $\cos x$ as common from both the terms in the numerator as
$
I = \int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{\cos x(1 - {{\cos }^2}x)}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} } dx - - - - (i) \\
$
Now, let us consider that $u = {\cos ^{\dfrac{3}{2}}}x - - - - (ii)$
Differentiate the equation (ii) with respect to x as:
$
\dfrac{d}{{dx}}(u) = \dfrac{d}{{dx}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) \\
\dfrac{{du}}{{dx}} = \dfrac{3}{2}{\cos ^{\left( {\dfrac{3}{2} - 1} \right)}}\left( { - \sin x} \right) \\
du = \dfrac{{ - 3\sin x\sqrt {\cos x} }}{2}dx \\
dx = \dfrac{{ - 2}}{{3\sin x\sqrt {\cos x} }}du - - - - (iii) \\
$
Substituting the value of ‘dx’ obtained in equation (iii) in the equation (i) we get,
$
I = \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} \times } \dfrac{{ - 2}}{{3\sin x\sqrt {\cos x} }}du \\
= \dfrac{{ - 2}}{3}\int {\dfrac{{\sin x}}{{\sin x}}\sqrt {\dfrac{{\cos x}}{{\cos x\left( {1 - {{\cos }^3}x} \right)}}} } du - - - - (iv) \\
$
Again, substitute the values of the equation (ii) in the equation (iv) we get
$
I = \dfrac{{ - 2}}{3}\int {\dfrac{{\sin x}}{{\sin x}}\sqrt {\dfrac{{\cos x}}{{\cos x\left( {1 - {{\cos }^3}x} \right)}}} } du \\
= \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {{\cos }^3}x}}} } \\
= \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {u^2}}}} du} - - - - (v){\text{ }}\left[ {u = {{\cos }^{\dfrac{3}{2}}}x \Rightarrow {{\cos }^3}x = {u^2}} \right] \\
$
Using the definite integral formula \[\int {\dfrac{1}{{\sqrt {1 - {a^2}} }} = {{\sin }^{ - 1}}a} \] in the equation (v) we get
$
I = \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {u^2}}}} du} \\
= \dfrac{{ - 2}}{3}\left( {{{\sin }^1}u} \right) + c - - - - (vi) \\
$
Now, substitute the value of $ u $ from the equation (ii) we get
$
I = \dfrac{{ - 2}}{3}\left( {{{\sin }^1}u} \right) + c \\
= \dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
$
Hence, $\int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx = \dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c$
Option A is correct.
Note:
While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Sketch the electric field lines in case of an electric class 12 physics CBSE

Explain the formation of energy bands in solids On class 12 physics CBSE

Mention any two factors on which the capacitance of class 12 physics CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

a Draw Labelled diagram of Standard Hydrogen Electrode class 12 chemistry CBSE

