
$\int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx \\ $
$
A.\dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
B.\dfrac{3}{2}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
C.\dfrac{{ - 2}}{3}{\cos ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
D.\dfrac{3}{2}{\cos ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
$
Answer
572.1k+ views
Hint:
The given function is indefinite since there is no limit given. The indefinite integral of a function is a differentiable function F whose derivative is equal to the original function f. The first fundamental theorem of calculus allows definite integrals to be computed in terms of indefinite integrals.
In the given function, we will try to bring all the identity in the same form, and then we will use the trigonometric identity \[1 - {\cos ^2}\theta = {\sin ^2}\theta \] and we further reduce the function and then it is integrated.
Complete step by step solution:
Let us consider that $I = \int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx$
The above equation can also be written by taking $\cos x$ as common from both the terms in the numerator as
$
I = \int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{\cos x(1 - {{\cos }^2}x)}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} } dx - - - - (i) \\
$
Now, let us consider that $u = {\cos ^{\dfrac{3}{2}}}x - - - - (ii)$
Differentiate the equation (ii) with respect to x as:
$
\dfrac{d}{{dx}}(u) = \dfrac{d}{{dx}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) \\
\dfrac{{du}}{{dx}} = \dfrac{3}{2}{\cos ^{\left( {\dfrac{3}{2} - 1} \right)}}\left( { - \sin x} \right) \\
du = \dfrac{{ - 3\sin x\sqrt {\cos x} }}{2}dx \\
dx = \dfrac{{ - 2}}{{3\sin x\sqrt {\cos x} }}du - - - - (iii) \\
$
Substituting the value of ‘dx’ obtained in equation (iii) in the equation (i) we get,
$
I = \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} \times } \dfrac{{ - 2}}{{3\sin x\sqrt {\cos x} }}du \\
= \dfrac{{ - 2}}{3}\int {\dfrac{{\sin x}}{{\sin x}}\sqrt {\dfrac{{\cos x}}{{\cos x\left( {1 - {{\cos }^3}x} \right)}}} } du - - - - (iv) \\
$
Again, substitute the values of the equation (ii) in the equation (iv) we get
$
I = \dfrac{{ - 2}}{3}\int {\dfrac{{\sin x}}{{\sin x}}\sqrt {\dfrac{{\cos x}}{{\cos x\left( {1 - {{\cos }^3}x} \right)}}} } du \\
= \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {{\cos }^3}x}}} } \\
= \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {u^2}}}} du} - - - - (v){\text{ }}\left[ {u = {{\cos }^{\dfrac{3}{2}}}x \Rightarrow {{\cos }^3}x = {u^2}} \right] \\
$
Using the definite integral formula \[\int {\dfrac{1}{{\sqrt {1 - {a^2}} }} = {{\sin }^{ - 1}}a} \] in the equation (v) we get
$
I = \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {u^2}}}} du} \\
= \dfrac{{ - 2}}{3}\left( {{{\sin }^1}u} \right) + c - - - - (vi) \\
$
Now, substitute the value of $ u $ from the equation (ii) we get
$
I = \dfrac{{ - 2}}{3}\left( {{{\sin }^1}u} \right) + c \\
= \dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
$
Hence, $\int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx = \dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c$
Option A is correct.
Note:
While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
The given function is indefinite since there is no limit given. The indefinite integral of a function is a differentiable function F whose derivative is equal to the original function f. The first fundamental theorem of calculus allows definite integrals to be computed in terms of indefinite integrals.
In the given function, we will try to bring all the identity in the same form, and then we will use the trigonometric identity \[1 - {\cos ^2}\theta = {\sin ^2}\theta \] and we further reduce the function and then it is integrated.
Complete step by step solution:
Let us consider that $I = \int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx$
The above equation can also be written by taking $\cos x$ as common from both the terms in the numerator as
$
I = \int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{\cos x(1 - {{\cos }^2}x)}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} } dx - - - - (i) \\
$
Now, let us consider that $u = {\cos ^{\dfrac{3}{2}}}x - - - - (ii)$
Differentiate the equation (ii) with respect to x as:
$
\dfrac{d}{{dx}}(u) = \dfrac{d}{{dx}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) \\
\dfrac{{du}}{{dx}} = \dfrac{3}{2}{\cos ^{\left( {\dfrac{3}{2} - 1} \right)}}\left( { - \sin x} \right) \\
du = \dfrac{{ - 3\sin x\sqrt {\cos x} }}{2}dx \\
dx = \dfrac{{ - 2}}{{3\sin x\sqrt {\cos x} }}du - - - - (iii) \\
$
Substituting the value of ‘dx’ obtained in equation (iii) in the equation (i) we get,
$
I = \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} } dx \\
= \int {\sqrt {\dfrac{{{{\sin }^2}x\cos x}}{{1 - {{\cos }^3}x}}} \times } \dfrac{{ - 2}}{{3\sin x\sqrt {\cos x} }}du \\
= \dfrac{{ - 2}}{3}\int {\dfrac{{\sin x}}{{\sin x}}\sqrt {\dfrac{{\cos x}}{{\cos x\left( {1 - {{\cos }^3}x} \right)}}} } du - - - - (iv) \\
$
Again, substitute the values of the equation (ii) in the equation (iv) we get
$
I = \dfrac{{ - 2}}{3}\int {\dfrac{{\sin x}}{{\sin x}}\sqrt {\dfrac{{\cos x}}{{\cos x\left( {1 - {{\cos }^3}x} \right)}}} } du \\
= \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {{\cos }^3}x}}} } \\
= \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {u^2}}}} du} - - - - (v){\text{ }}\left[ {u = {{\cos }^{\dfrac{3}{2}}}x \Rightarrow {{\cos }^3}x = {u^2}} \right] \\
$
Using the definite integral formula \[\int {\dfrac{1}{{\sqrt {1 - {a^2}} }} = {{\sin }^{ - 1}}a} \] in the equation (v) we get
$
I = \dfrac{{ - 2}}{3}\int {\sqrt {\dfrac{1}{{1 - {u^2}}}} du} \\
= \dfrac{{ - 2}}{3}\left( {{{\sin }^1}u} \right) + c - - - - (vi) \\
$
Now, substitute the value of $ u $ from the equation (ii) we get
$
I = \dfrac{{ - 2}}{3}\left( {{{\sin }^1}u} \right) + c \\
= \dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c \\
$
Hence, $\int {\sqrt {\dfrac{{\cos x - {{\cos }^3}x}}{{1 - {{\cos }^3}x}}} } dx = \dfrac{{ - 2}}{3}{\sin ^{ - 1}}\left( {{{\cos }^{\dfrac{3}{2}}}x} \right) + c$
Option A is correct.
Note:
While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

