
What is \[\int {\dfrac{{{x^2} - 1}}{{{x^4} + {x^2} + 1}}} dx\] ?
Answer
483.3k+ views
Hint: We will assume \[I = \int {\dfrac{{{x^2} - 1}}{{{x^4} + {x^2} + 1}}} dx\]. Then we will take \[{x^2}\] common from the numerator and the denominator. We will make a perfect square of \[{\left( {x + \dfrac{1}{x}} \right)^2}\]by adding and subtracting \[1\] in the denominator. Then we will substitute \[x + \dfrac{1}{x} = t\] and then we will integrate it and substitute back \[x + \dfrac{1}{x} = t\]. We will simplify this to find the result.
Complete step by step answer:
Let \[I = \int {\dfrac{{{x^2} - 1}}{{{x^4} + {x^2} + 1}}} dx\]. Taking \[{x^2}\] common from the numerator and the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{{x^2}\left( {1 - \dfrac{1}{{{x^2}}}} \right)}}{{{x^2}\left( {{x^2} + 1 + \dfrac{1}{{{x^2}}}} \right)}}} dx\]
On cancelling the common term from the numerator and the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{1 - \dfrac{1}{{{x^2}}}}}{{{x^2} + 1 + \dfrac{1}{{{x^2}}}}}} dx\]
Now, adding and subtracting \[1\] in the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{1 - \dfrac{1}{{{x^2}}}}}{{{x^2} + 2 + \dfrac{1}{{{x^2}}} - 1}}} dx\]
We can see that \[\left( {{x^2} + 2 + \dfrac{1}{{{x^2}}}} \right)\] is equal to \[{\left( {x + \dfrac{1}{x}} \right)^2}\].
On rewriting, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {1 - \dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x + \dfrac{1}{x}} \right)}^2} - 1}}} dx - - - (1)\]
Let \[x + \dfrac{1}{x} = t\]. On differentiating w.r.t \[x\], we get
\[ \Rightarrow 1 - \dfrac{1}{{{x^2}}} = \dfrac{{dt}}{{dx}}\]
\[ \Rightarrow dt = \left( {1 - \dfrac{1}{{{x^2}}}} \right)dx\]
On substituting in \[(1)\], we get
\[ \Rightarrow I = \int {\dfrac{{dt}}{{{t^2} - 1}}} \]
Using the identity: \[{a^2} - {b^2} = (a + b)(a - b)\], we get
\[ \Rightarrow I = \int {\dfrac{{dt}}{{\left( {t + 1} \right)\left( {t - 1} \right)}}} \]
Multiplying \[2\] in the numerator and the denominator, we get
\[ \Rightarrow I = \dfrac{1}{2}\int {\dfrac{2}{{\left( {t + 1} \right)\left( {t - 1} \right)}}} dt\]
On rewriting the numerator, we get
\[ \Rightarrow I = \dfrac{1}{2}\int {\dfrac{{\left( {t + 1} \right) - \left( {t - 1} \right)}}{{\left( {t + 1} \right)\left( {t - 1} \right)}}} dt\]
On dividing, we get
\[ \Rightarrow I = \dfrac{1}{2}\int {\left( {\dfrac{1}{{t - 1}} - \dfrac{1}{{t + 1}}} \right)} dt\]
\[ \Rightarrow I = \dfrac{1}{2}\left( {\int {\dfrac{1}{{t - 1}}dt} - \int {\dfrac{1}{{t + 1}}dt} } \right)\]
On integration, we get
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\ln \left( {t - 1} \right) - \ln \left( {t + 1} \right)} \right] + C\]
From the property of logarithm, we know that \[\ln a - \ln b = \ln \left( {\dfrac{a}{b}} \right)\]. Using this, we get
\[ \Rightarrow I = \dfrac{1}{2}\ln \left( {\dfrac{{t - 1}}{{t + 1}}} \right) + C\]
Substituting back \[x + \dfrac{1}{x} = t\], we get
\[ \Rightarrow I = \dfrac{1}{2}\ln \left( {\dfrac{{x + \dfrac{1}{x} - 1}}{{x + \dfrac{1}{x} + 1}}} \right) + C\]
On simplifying, we get
\[ \Rightarrow I = \dfrac{1}{2}\ln \left( {\dfrac{{\dfrac{{{x^2} - x + 1}}{x}}}{{\dfrac{{{x^2} + x + 1}}{x}}}} \right) + C\]
On further simplification, we get
\[ \therefore I = \dfrac{1}{2}\ln \left( {\dfrac{{{x^2} - x + 1}}{{{x^2} + x + 1}}} \right) + C\]
Therefore, \[\int {\dfrac{{{x^2} - 1}}{{{x^4} + {x^2} + 1}}} dx = \dfrac{1}{2}\ln \left( {\dfrac{{{x^2} - x + 1}}{{{x^2} - x + 1}}} \right) + C\].
Note:Here, \[C\] is the constant of integration. In a definite integral we get the value of integration constant by using the upper and lower limit of integration. Note, we can also use inverse trigonometric properties to find the antiderivative. Using the direct integration formula that is mentioned as identity can make the problem simple by just substituting those values.
Complete step by step answer:
Let \[I = \int {\dfrac{{{x^2} - 1}}{{{x^4} + {x^2} + 1}}} dx\]. Taking \[{x^2}\] common from the numerator and the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{{x^2}\left( {1 - \dfrac{1}{{{x^2}}}} \right)}}{{{x^2}\left( {{x^2} + 1 + \dfrac{1}{{{x^2}}}} \right)}}} dx\]
On cancelling the common term from the numerator and the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{1 - \dfrac{1}{{{x^2}}}}}{{{x^2} + 1 + \dfrac{1}{{{x^2}}}}}} dx\]
Now, adding and subtracting \[1\] in the denominator, we get
\[ \Rightarrow I = \int {\dfrac{{1 - \dfrac{1}{{{x^2}}}}}{{{x^2} + 2 + \dfrac{1}{{{x^2}}} - 1}}} dx\]
We can see that \[\left( {{x^2} + 2 + \dfrac{1}{{{x^2}}}} \right)\] is equal to \[{\left( {x + \dfrac{1}{x}} \right)^2}\].
On rewriting, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {1 - \dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x + \dfrac{1}{x}} \right)}^2} - 1}}} dx - - - (1)\]
Let \[x + \dfrac{1}{x} = t\]. On differentiating w.r.t \[x\], we get
\[ \Rightarrow 1 - \dfrac{1}{{{x^2}}} = \dfrac{{dt}}{{dx}}\]
\[ \Rightarrow dt = \left( {1 - \dfrac{1}{{{x^2}}}} \right)dx\]
On substituting in \[(1)\], we get
\[ \Rightarrow I = \int {\dfrac{{dt}}{{{t^2} - 1}}} \]
Using the identity: \[{a^2} - {b^2} = (a + b)(a - b)\], we get
\[ \Rightarrow I = \int {\dfrac{{dt}}{{\left( {t + 1} \right)\left( {t - 1} \right)}}} \]
Multiplying \[2\] in the numerator and the denominator, we get
\[ \Rightarrow I = \dfrac{1}{2}\int {\dfrac{2}{{\left( {t + 1} \right)\left( {t - 1} \right)}}} dt\]
On rewriting the numerator, we get
\[ \Rightarrow I = \dfrac{1}{2}\int {\dfrac{{\left( {t + 1} \right) - \left( {t - 1} \right)}}{{\left( {t + 1} \right)\left( {t - 1} \right)}}} dt\]
On dividing, we get
\[ \Rightarrow I = \dfrac{1}{2}\int {\left( {\dfrac{1}{{t - 1}} - \dfrac{1}{{t + 1}}} \right)} dt\]
\[ \Rightarrow I = \dfrac{1}{2}\left( {\int {\dfrac{1}{{t - 1}}dt} - \int {\dfrac{1}{{t + 1}}dt} } \right)\]
On integration, we get
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\ln \left( {t - 1} \right) - \ln \left( {t + 1} \right)} \right] + C\]
From the property of logarithm, we know that \[\ln a - \ln b = \ln \left( {\dfrac{a}{b}} \right)\]. Using this, we get
\[ \Rightarrow I = \dfrac{1}{2}\ln \left( {\dfrac{{t - 1}}{{t + 1}}} \right) + C\]
Substituting back \[x + \dfrac{1}{x} = t\], we get
\[ \Rightarrow I = \dfrac{1}{2}\ln \left( {\dfrac{{x + \dfrac{1}{x} - 1}}{{x + \dfrac{1}{x} + 1}}} \right) + C\]
On simplifying, we get
\[ \Rightarrow I = \dfrac{1}{2}\ln \left( {\dfrac{{\dfrac{{{x^2} - x + 1}}{x}}}{{\dfrac{{{x^2} + x + 1}}{x}}}} \right) + C\]
On further simplification, we get
\[ \therefore I = \dfrac{1}{2}\ln \left( {\dfrac{{{x^2} - x + 1}}{{{x^2} + x + 1}}} \right) + C\]
Therefore, \[\int {\dfrac{{{x^2} - 1}}{{{x^4} + {x^2} + 1}}} dx = \dfrac{1}{2}\ln \left( {\dfrac{{{x^2} - x + 1}}{{{x^2} - x + 1}}} \right) + C\].
Note:Here, \[C\] is the constant of integration. In a definite integral we get the value of integration constant by using the upper and lower limit of integration. Note, we can also use inverse trigonometric properties to find the antiderivative. Using the direct integration formula that is mentioned as identity can make the problem simple by just substituting those values.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

