
\[\int {\dfrac{1}{{\sin x\sqrt {\sin x\cos x} }}} dx = \]
A) \[\sqrt {\tan x} + c\]
B) \[2\sqrt {\tan x} + c\]
C) \[ - 2\sqrt {\cot x} + c\]
D) \[2\sqrt {\cot x} + c\]
Answer
586.8k+ views
Hint: The given function is indefinite since there is no limit given. Indefinite integral of a function f is a differentiable function F whose derivative is equal to the original function f. The first fundamental theorem of calculus allows definite integrals to be computed in terms of indefinite integrals.
Complete step by step answer:
Let the given integral be $I$ such that:
\[I = \int {\dfrac{1}{{\sin x\sqrt {\sin x\cos x} }}} dx\]
Multiply numerator and the denominator of the function with \[{\sec ^2}x\], hence we get
\[I = \int {\dfrac{{{{\sec }^2}x}}{{\sin x\sqrt {\sin x\cos x} \times {{\sec }^2}x}}} dx\]
Now this can be written as
\[I = \int {\dfrac{{{{\sec }^2}x}}{{\tan x\sqrt {\tan x} }}} dx\]
Which is equivalent to
\[I = \int {\dfrac{{{{\sec }^2}x}}{{{{\tan }^{\dfrac{3}{2}}}x}}} dx\]
Now let
\[
\sqrt {\tan x} = t \\
\tan x = {t^2} \\
\]
So by differentiating we get
\[
\Rightarrow \tan x = {t^2} \\
\Rightarrow {\sec ^2}x = 2t\dfrac{{dt}}{{dx}} \\
\Rightarrow dx = \dfrac{{2t}}{{{{\sec }^2}x}}dt \\
\]
Now substitute the value of \[{\sec ^2}xdx = 2tdt\]in the integral function, hence we get
\[
I = \int {\dfrac{{{{\sec }^2}x}}{{{t^3}}} \times \dfrac{{2tdt}}{{{{\sec }^2}x}}} \\
= \int {\dfrac{2}{{{t^2}}}dt} \\
\]
By integrating, we get
\[
I = \int {\dfrac{2}{{{t^2}}}dt} \\
= - \dfrac{2}{t} + c \\
\]
Now substitute the value of\[t = \sqrt {\tan x} \], we get
\[
I = - \dfrac{2}{t} + c \\
= - \dfrac{2}{{\sqrt {\tan x} }} + c \\
\]
This can be written as
\[
I = - \dfrac{2}{{\sqrt {\tan x} }} + c \\
= - 2\sqrt {\cot x} + c \\
\]
Hence
$\Rightarrow$ \[\int {\dfrac{1}{{\sin x\sqrt {\sin x\cos x} }}} dx = - 2\sqrt {\cot x} + c\]. Hence Option 3 is correct.
Note: While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
Complete step by step answer:
Let the given integral be $I$ such that:
\[I = \int {\dfrac{1}{{\sin x\sqrt {\sin x\cos x} }}} dx\]
Multiply numerator and the denominator of the function with \[{\sec ^2}x\], hence we get
\[I = \int {\dfrac{{{{\sec }^2}x}}{{\sin x\sqrt {\sin x\cos x} \times {{\sec }^2}x}}} dx\]
Now this can be written as
\[I = \int {\dfrac{{{{\sec }^2}x}}{{\tan x\sqrt {\tan x} }}} dx\]
Which is equivalent to
\[I = \int {\dfrac{{{{\sec }^2}x}}{{{{\tan }^{\dfrac{3}{2}}}x}}} dx\]
Now let
\[
\sqrt {\tan x} = t \\
\tan x = {t^2} \\
\]
So by differentiating we get
\[
\Rightarrow \tan x = {t^2} \\
\Rightarrow {\sec ^2}x = 2t\dfrac{{dt}}{{dx}} \\
\Rightarrow dx = \dfrac{{2t}}{{{{\sec }^2}x}}dt \\
\]
Now substitute the value of \[{\sec ^2}xdx = 2tdt\]in the integral function, hence we get
\[
I = \int {\dfrac{{{{\sec }^2}x}}{{{t^3}}} \times \dfrac{{2tdt}}{{{{\sec }^2}x}}} \\
= \int {\dfrac{2}{{{t^2}}}dt} \\
\]
By integrating, we get
\[
I = \int {\dfrac{2}{{{t^2}}}dt} \\
= - \dfrac{2}{t} + c \\
\]
Now substitute the value of\[t = \sqrt {\tan x} \], we get
\[
I = - \dfrac{2}{t} + c \\
= - \dfrac{2}{{\sqrt {\tan x} }} + c \\
\]
This can be written as
\[
I = - \dfrac{2}{{\sqrt {\tan x} }} + c \\
= - 2\sqrt {\cot x} + c \\
\]
Hence
$\Rightarrow$ \[\int {\dfrac{1}{{\sin x\sqrt {\sin x\cos x} }}} dx = - 2\sqrt {\cot x} + c\]. Hence Option 3 is correct.
Note: While substituting the real parameter of the question with the auxiliary parameter, one should be sure that it will not make the problem more complex. However, selecting an auxiliary parameter completely depends on the individual point of view.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

