
What is \[\int {{a^x}{e^x}\,dx} \]equal to?
A. $ \dfrac{{{a^x}{e^x}}}{{\ln \,a}} + \,c\, $ where c is the constant of integration
B. $ {a^x}{e^x} $ + c where c is the constant of integration
C. $ \dfrac{{{a^x}{e^x}}}{{\ln (ae)}} $ + c where c is the constant of integration
D. None of the above
Answer
581.7k+ views
Hint: n this question, we can clearly see that \[\int {{a^x}{e^x}\,dx} \] is in the form of $ \int {u.v\,dx} $ . So, we can use the formula of integration of two functions or integration by parts. Choose first and second function according to the ILATE rule. Here $ {a^x} $ will be the first function and $ {e^x} $ will be the second function. Proceed with simplification after applying the product formula.
Complete step-by-step answer:
Let I = \[\int {{a^x}{e^x}\,dx} \]
We know that, $ \int {u.vdx = u\int {vdx\, - \,\int {\left[ {\dfrac{d}{{dx}}u.\int {vdx} } \right]} } } \,dx $
Where u = $ {a^x} $ and v = $ {e^x} $ .
$ I $ = $ \int {{a^x}} .{e^x}\,dx\, = \,{a^x}.\int {{e^x}} dx\, - \,\int {\left[ {\dfrac{d}{{dx}}{a^x}.\,\int {{e^x}} dx} \right]} dx $ (Putting the values of u and v in the above formula)
$\Rightarrow I $ = $ {a^x}.{e^x} - \,\int {{a^x}} .\ln a\,.\,{e^x}\,dx $ (We know that $ \int {{e^x}} = {e^x} $ and $ \dfrac{d}{{dx}}{a^x} = {a^x}.\ln a $ )
$\Rightarrow I $ = $ {a^x}.{e^x}\, - \,\ln \,a\int {{a^x}} .{e^x}dx $ (ln a is constant)
$\Rightarrow I $ = $ {a^x}.{e^x} - \,I\ln a $ + c (Putting the value of \[\int {{a^x}{e^x}\,dx} \]= I)
$ I + I\,\ln \,a\, = \,{a^x}.{e^x} $ + c
$ I\left( {1 + \ln a} \right) = \,{a^x}{e^x} $ + c
$\Rightarrow I = \dfrac{{{a^x}{e^x}}}{{1 + \ln \,a}} $ + c
$\Rightarrow I = \dfrac{{{a^x}{e^x}}}{{\ln \,e\, + \,\ln a}} + c $ (We know that the value of ln e = 1)
$\Rightarrow I = \dfrac{{{a^x}{e^x}}}{{\ln ae}} + c $
So, the correct answer is “Option C”.
Note: Integration by parts formula $ \int {u.vdx = u\int {vdx\, - \,\int {\left[ {\dfrac{d}{{dx}}u.\int {vdx} } \right]} } } \,dx $ . This formula is used for integrating the product of two functions. But you should note that this formula is not applicable for functions such as $ \int {\sqrt x } \cos xdx $ . But this formula will be applicable on $ \int {x\cos x} $ . One more thing you need to keep in mind that we do not add any constant while finding the integral of the second function.
There is a rule of choosing the first function and the second function, that rule is called ILATE. I stands for inverse trigonometric function, L stands for logarithmic function, A stands for algebraic function, T stands for trigonometric function and E stands for exponential function. Always follow this rule while integrating by product. If you do the integration randomly, the solution becomes much more complicated.
Complete step-by-step answer:
Let I = \[\int {{a^x}{e^x}\,dx} \]
We know that, $ \int {u.vdx = u\int {vdx\, - \,\int {\left[ {\dfrac{d}{{dx}}u.\int {vdx} } \right]} } } \,dx $
Where u = $ {a^x} $ and v = $ {e^x} $ .
$ I $ = $ \int {{a^x}} .{e^x}\,dx\, = \,{a^x}.\int {{e^x}} dx\, - \,\int {\left[ {\dfrac{d}{{dx}}{a^x}.\,\int {{e^x}} dx} \right]} dx $ (Putting the values of u and v in the above formula)
$\Rightarrow I $ = $ {a^x}.{e^x} - \,\int {{a^x}} .\ln a\,.\,{e^x}\,dx $ (We know that $ \int {{e^x}} = {e^x} $ and $ \dfrac{d}{{dx}}{a^x} = {a^x}.\ln a $ )
$\Rightarrow I $ = $ {a^x}.{e^x}\, - \,\ln \,a\int {{a^x}} .{e^x}dx $ (ln a is constant)
$\Rightarrow I $ = $ {a^x}.{e^x} - \,I\ln a $ + c (Putting the value of \[\int {{a^x}{e^x}\,dx} \]= I)
$ I + I\,\ln \,a\, = \,{a^x}.{e^x} $ + c
$ I\left( {1 + \ln a} \right) = \,{a^x}{e^x} $ + c
$\Rightarrow I = \dfrac{{{a^x}{e^x}}}{{1 + \ln \,a}} $ + c
$\Rightarrow I = \dfrac{{{a^x}{e^x}}}{{\ln \,e\, + \,\ln a}} + c $ (We know that the value of ln e = 1)
$\Rightarrow I = \dfrac{{{a^x}{e^x}}}{{\ln ae}} + c $
So, the correct answer is “Option C”.
Note: Integration by parts formula $ \int {u.vdx = u\int {vdx\, - \,\int {\left[ {\dfrac{d}{{dx}}u.\int {vdx} } \right]} } } \,dx $ . This formula is used for integrating the product of two functions. But you should note that this formula is not applicable for functions such as $ \int {\sqrt x } \cos xdx $ . But this formula will be applicable on $ \int {x\cos x} $ . One more thing you need to keep in mind that we do not add any constant while finding the integral of the second function.
There is a rule of choosing the first function and the second function, that rule is called ILATE. I stands for inverse trigonometric function, L stands for logarithmic function, A stands for algebraic function, T stands for trigonometric function and E stands for exponential function. Always follow this rule while integrating by product. If you do the integration randomly, the solution becomes much more complicated.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

