
Insert three rational numbers between $\dfrac{2}{3}{\text{ and }}\dfrac{3}{5}.$
Answer
597.9k+ views
Hint: As we know that rational numbers are represented as $\dfrac{{\text{p}}}{q}$ . And we have to find more rational numbers between $\dfrac{2}{3}{\text{ and }}\dfrac{3}{5}.$ so, we multiply the numerator and denominator by the same number.
Complete step-by-step answer:
Given numbers are $\dfrac{2}{3}{\text{ and }}\dfrac{3}{5}.$
So, we have to find three numbers, we will multiply the given numbers by $\dfrac{{20}}{{20}}{\text{ and }}\dfrac{{12}}{{12}}$ respectively
Let the number ${\text{A = }}\dfrac{2}{3}{\text{ and B = }}\dfrac{3}{5}$
Now, multiply A by $\dfrac{{20}}{{20}}$ , we obtain
${\text{A = }}\dfrac{2}{3} \times \dfrac{{20}}{{20}} = \dfrac{{40}}{{60}}$
And, multiply B by $\dfrac{{12}}{{12}}$ , we obtain
${\text{B = }}\dfrac{3}{5} \times \dfrac{{12}}{{12}} = \dfrac{{36}}{{60}}$
So, between $\dfrac{{40}}{{60}}{\text{ and }}\dfrac{{36}}{{60}}$ , we have to find rational numbers
Here, $\dfrac{{40}}{{60}} > \dfrac{{39}}{{60}} > \dfrac{{38}}{{60}} > \dfrac{{37}}{{60}} > \dfrac{{36}}{{60}}$
Hence three rational numbers between ${\text{A = }}\dfrac{2}{3}{\text{ and B = }}\dfrac{3}{5}$ are
$\dfrac{{39}}{{60}},\dfrac{{38}}{{60}},\dfrac{{37}}{{60}}$
Note- To solve these types of questions, basic definitions of numbers, their properties must be remembered. Some definitions such as Irrational numbers have decimal expansion that neither terminate nor periodic and cannot be expressed as fraction for any integers. This question can also be done by continuous finding the average of the given number first and then the average of numbers obtained.
Complete step-by-step answer:
Given numbers are $\dfrac{2}{3}{\text{ and }}\dfrac{3}{5}.$
So, we have to find three numbers, we will multiply the given numbers by $\dfrac{{20}}{{20}}{\text{ and }}\dfrac{{12}}{{12}}$ respectively
Let the number ${\text{A = }}\dfrac{2}{3}{\text{ and B = }}\dfrac{3}{5}$
Now, multiply A by $\dfrac{{20}}{{20}}$ , we obtain
${\text{A = }}\dfrac{2}{3} \times \dfrac{{20}}{{20}} = \dfrac{{40}}{{60}}$
And, multiply B by $\dfrac{{12}}{{12}}$ , we obtain
${\text{B = }}\dfrac{3}{5} \times \dfrac{{12}}{{12}} = \dfrac{{36}}{{60}}$
So, between $\dfrac{{40}}{{60}}{\text{ and }}\dfrac{{36}}{{60}}$ , we have to find rational numbers
Here, $\dfrac{{40}}{{60}} > \dfrac{{39}}{{60}} > \dfrac{{38}}{{60}} > \dfrac{{37}}{{60}} > \dfrac{{36}}{{60}}$
Hence three rational numbers between ${\text{A = }}\dfrac{2}{3}{\text{ and B = }}\dfrac{3}{5}$ are
$\dfrac{{39}}{{60}},\dfrac{{38}}{{60}},\dfrac{{37}}{{60}}$
Note- To solve these types of questions, basic definitions of numbers, their properties must be remembered. Some definitions such as Irrational numbers have decimal expansion that neither terminate nor periodic and cannot be expressed as fraction for any integers. This question can also be done by continuous finding the average of the given number first and then the average of numbers obtained.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE


