Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Insert three rational numbers between $\dfrac{2}{3}{\text{ and }}\dfrac{3}{5}.$

Answer
VerifiedVerified
514.5k+ views
Hint: As we know that rational numbers are represented as $\dfrac{{\text{p}}}{q}$ . And we have to find more rational numbers between $\dfrac{2}{3}{\text{ and }}\dfrac{3}{5}.$ so, we multiply the numerator and denominator by the same number.

Complete step-by-step answer:
Given numbers are $\dfrac{2}{3}{\text{ and }}\dfrac{3}{5}.$
So, we have to find three numbers, we will multiply the given numbers by $\dfrac{{20}}{{20}}{\text{ and }}\dfrac{{12}}{{12}}$ respectively
Let the number ${\text{A = }}\dfrac{2}{3}{\text{ and B = }}\dfrac{3}{5}$
Now, multiply A by $\dfrac{{20}}{{20}}$ , we obtain
${\text{A = }}\dfrac{2}{3} \times \dfrac{{20}}{{20}} = \dfrac{{40}}{{60}}$
And, multiply B by $\dfrac{{12}}{{12}}$ , we obtain
${\text{B = }}\dfrac{3}{5} \times \dfrac{{12}}{{12}} = \dfrac{{36}}{{60}}$
So, between $\dfrac{{40}}{{60}}{\text{ and }}\dfrac{{36}}{{60}}$ , we have to find rational numbers
Here, $\dfrac{{40}}{{60}} > \dfrac{{39}}{{60}} > \dfrac{{38}}{{60}} > \dfrac{{37}}{{60}} > \dfrac{{36}}{{60}}$
Hence three rational numbers between ${\text{A = }}\dfrac{2}{3}{\text{ and B = }}\dfrac{3}{5}$ are
$\dfrac{{39}}{{60}},\dfrac{{38}}{{60}},\dfrac{{37}}{{60}}$

Note- To solve these types of questions, basic definitions of numbers, their properties must be remembered. Some definitions such as Irrational numbers have decimal expansion that neither terminate nor periodic and cannot be expressed as fraction for any integers. This question can also be done by continuous finding the average of the given number first and then the average of numbers obtained.
WhatsApp Banner