
How can an infinite series have a finite sum?
Answer
522.3k+ views
Hint: To answer this question, we need to take a real life example. We will then convert this real life example in the form of geometric series. As we know that the infinite geometric series has a certain sum, we can prove that an infinite series has a finite sum.
Complete step by step solution:
Let us consider the runner who has to run the distance of $ 2km $ .
Now, the condition is that the runner has to take a stop at half of the remaining distance from the finish line.
As he starts, his first stop will be at $ 1km $ . Now, he has one more kilometer to cover. Thus, his second stop will be at $ \dfrac{1}{2}km $ . Similarly, the third stop will be at \[\dfrac{1}{4}km\] and this goes on if the runner keeps stopping in this way. However, we know that the total distance to be covered by him is $ 2km $ .
This total distance can be expressed as the geometric series:
$ 1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + ...... = {\sum\limits_{n = 0}^\infty {\left( {\dfrac{1}{2}} \right)} ^n} $
Since the runner is taking a stop at each half of your remaining distance, he will never actually reach the finish line, but he is getting closer and closer to it. Now, it is clear that the total distance is $ 2km $ , therefore, the sum of this geometric series will be 2.
Thus, we can say that an infinite series can have a finite sum.
Note: We know that for convergent geometric series, its sum can be found by using the formula:
$ S = \dfrac{a}{{1 - r}} $ , where, $ a $ is the first term and $ r $ is the common ratio of the geometric series.
In our case, $ a = 1 $ and $ r = \dfrac{1}{2} $ .
$ \Rightarrow S = \dfrac{1}{{1 - \dfrac{1}{2}}} = \dfrac{1}{{\dfrac{1}{2}}} = 2 $
This also indicates that the infinite series can have a finite sum.
Complete step by step solution:
Let us consider the runner who has to run the distance of $ 2km $ .
Now, the condition is that the runner has to take a stop at half of the remaining distance from the finish line.
As he starts, his first stop will be at $ 1km $ . Now, he has one more kilometer to cover. Thus, his second stop will be at $ \dfrac{1}{2}km $ . Similarly, the third stop will be at \[\dfrac{1}{4}km\] and this goes on if the runner keeps stopping in this way. However, we know that the total distance to be covered by him is $ 2km $ .
This total distance can be expressed as the geometric series:
$ 1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + ...... = {\sum\limits_{n = 0}^\infty {\left( {\dfrac{1}{2}} \right)} ^n} $
Since the runner is taking a stop at each half of your remaining distance, he will never actually reach the finish line, but he is getting closer and closer to it. Now, it is clear that the total distance is $ 2km $ , therefore, the sum of this geometric series will be 2.
Thus, we can say that an infinite series can have a finite sum.
Note: We know that for convergent geometric series, its sum can be found by using the formula:
$ S = \dfrac{a}{{1 - r}} $ , where, $ a $ is the first term and $ r $ is the common ratio of the geometric series.
In our case, $ a = 1 $ and $ r = \dfrac{1}{2} $ .
$ \Rightarrow S = \dfrac{1}{{1 - \dfrac{1}{2}}} = \dfrac{1}{{\dfrac{1}{2}}} = 2 $
This also indicates that the infinite series can have a finite sum.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

