Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

In$\Delta ABC$,$\angle C = 90^\circ $
If $BC = a,AC = b$and$AB = c$, find
(i)$c$when $a = 8cm$and $b = 6cm$
(ii) $a$when $c = 25cm$and $b = 7cm$
(iii) $b$when $c = 13cm$and $a = 5cm$

Answer
VerifiedVerified
582.3k+ views
Hint: Take each of the above cases, then use Pythagoras theorem to find the missing value in that case. Repeat the same procedure to find the missing value in all the cases.

Complete step-by-step answer:
seo images

Using Pythagoras theorem,
Hypotenuse2=Perpendicular2+base2
(i) $c$when, $a = 8cm$and $b = 6cm$
Here,
$AC = b = 6cm$
$BC = a = 8cm$
$AB = c = ?$
Applying Pythagoras theorem,
$\Rightarrow A{B^2} = A{C^2} + B{C^2}$
$\Rightarrow {c^2} = {b^2} + {a^2}$
Putting the values,
$\Rightarrow {c^2} = {6^2} + {8^2}$
$\Rightarrow {c^2} = 64 + 36$
$\Rightarrow c = 10$

ii) Find $a$when $c = 25cm$ and $b = 7cm$
$AC = b = 7cm$
$BC = a = ?$
$AB = c = 25cm$
Applying Pythagoras theorem,
$\Rightarrow A{C^2} = A{B^2} + B{C^2}$
$\Rightarrow {c^2} = {b^2} + {a^2}$
$\Rightarrow {25^2} = {7^2} + {a^2}$
$\Rightarrow {a^2} = {25^2} - {7^2}$
$\Rightarrow {a^2} = 625 - 49$
$\Rightarrow {a^2} = 576$
$\Rightarrow a = 24$

(iii) $b$when $c = 13cm$and $a = 5cm$
Here,
$ AC = b = ?$
$ BC = a = 5cm$
$ AB = c = 13cm$
Applying Pythagoras theorem,
$\Rightarrow A{C^2} = A{B^2} + B{C^2}$
$\Rightarrow {c^2} = {b^2} + {a^2}$
$\Rightarrow {13^2} = {b^2} + {5^2}$
$\Rightarrow {b^2} = 169 - 25$
$\Rightarrow {b^2} = \sqrt {144} $
$\Rightarrow b = 12$

Note: A triangle having 90 Degree is a right angled triangle. The Pythagoras theorem is useful to calculate the values asked to find in a question.
WhatsApp Banner