
In$\Delta ABC$, right angled at B, if$\tan A=\dfrac{1}{\sqrt{3}}$then find the value of:
A. $\sin A\cos C+\cos A\sin C$
B. $\cos A\cos C-\sin A\sin C$
Answer
597k+ views
Hint: The value of$\tan A$is given in the question so we can find the value of angle A. From the value of $\tan A$i.e. $\tan A=\dfrac{1}{\sqrt{3}}$we can find the value of angle A i.e.$\angle A={{30}^{\circ }}$. It is given that$\angle B={{90}^{\circ }}$. And the sum of all the angles of the triangle is 180° so$\angle C={{60}^{\circ }}$. Now, we can easily write the values of:
$\sin A,\cos A,\sin C,\cos C$.
Complete step by step solution:
In$\Delta ABC$, it is given that:
$\tan A=\dfrac{1}{\sqrt{3}}$
The value of angle A when$\tan A=\dfrac{1}{\sqrt{3}}$is 30°.
In the below figure, we are showing a $\Delta ABC$ right angled at B.
Now,$\Delta ABC$is right angled at B so$\angle B={{90}^{\circ }}$.
Sum of the angles of a triangle = 180°
$\begin{align}
& \angle A+\angle B+\angle C={{180}^{\circ }} \\
& {{30}^{\circ }}+{{90}^{\circ }}+\angle C={{180}^{\circ }} \\
& \angle C={{90}^{\circ }}-{{30}^{\circ }} \\
& \angle C={{60}^{\circ }} \\
\end{align}$
The below figure is a right angled $\Delta ABC$ marked with angle $A={{30}^{0}},B={{90}^{0}},C={{60}^{0}}$.
From the above values of angles A and C we can find the value of$\sin A,\cos A,\sin C,\cos C$.
$\sin C=\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$
$\cos C=\cos {{60}^{\circ }}=\dfrac{1}{2}$
$\begin{align}
& \sin A=\sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \cos A=\cos {{30}^{\circ }}=\dfrac{1}{2} \\
\end{align}$
Now, we are ready to solve the options given in the question.
A. $\sin A\cos C+\cos A\sin C$
Substituting the values of$\sin A,\cos A,\sin C,\cos C$in the above expression we get,
$\begin{align}
& \dfrac{1}{2}\left( \dfrac{1}{2} \right)+\dfrac{\sqrt{3}}{2}\left( \dfrac{\sqrt{3}}{2} \right) \\
& =\dfrac{1}{4}+\dfrac{3}{4} \\
& =1 \\
\end{align}$
B. $\cos A\cos C-\sin A\sin C$
Substituting the values of$\sin A,\cos A,\sin C,\cos C$in the above expression we get,
$\begin{align}
& \dfrac{\sqrt{3}}{2}\left( \dfrac{1}{2} \right)-\dfrac{1}{2}\left( \dfrac{\sqrt{3}}{2} \right) \\
& =\dfrac{\sqrt{3}}{4}-\dfrac{\sqrt{3}}{4} \\
& =0 \\
\end{align}$
Note: The other way of solving the above problem is that:
If you carefully look at this expression $\sin A\cos C+\cos A\sin C$you will find this is the expansion of trigonometric identity$\sin \left( A+C \right)$. So, we can write this expression as$\sin \left( A+C \right)$.
From the sum of angles of a triangle we can write$A+C=\pi -B$so we can write$\sin \left( A+C \right)$as$\sin \left( \pi -B \right)$or$\sin B$where the value of$B={{90}^{0}}$.
So, the value of this expression$\sin A\cos C+\cos A\sin C$is $\sin {{90}^{0}}$(or 1).
Similarly, this expression$\cos A\cos C-\sin A\sin C$is the expansion of the identity$\cos \left( A+C \right)$.
$\sin A,\cos A,\sin C,\cos C$.
Complete step by step solution:
In$\Delta ABC$, it is given that:
$\tan A=\dfrac{1}{\sqrt{3}}$
The value of angle A when$\tan A=\dfrac{1}{\sqrt{3}}$is 30°.
In the below figure, we are showing a $\Delta ABC$ right angled at B.
Now,$\Delta ABC$is right angled at B so$\angle B={{90}^{\circ }}$.
Sum of the angles of a triangle = 180°
$\begin{align}
& \angle A+\angle B+\angle C={{180}^{\circ }} \\
& {{30}^{\circ }}+{{90}^{\circ }}+\angle C={{180}^{\circ }} \\
& \angle C={{90}^{\circ }}-{{30}^{\circ }} \\
& \angle C={{60}^{\circ }} \\
\end{align}$
The below figure is a right angled $\Delta ABC$ marked with angle $A={{30}^{0}},B={{90}^{0}},C={{60}^{0}}$.
From the above values of angles A and C we can find the value of$\sin A,\cos A,\sin C,\cos C$.
$\sin C=\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$
$\cos C=\cos {{60}^{\circ }}=\dfrac{1}{2}$
$\begin{align}
& \sin A=\sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \cos A=\cos {{30}^{\circ }}=\dfrac{1}{2} \\
\end{align}$
Now, we are ready to solve the options given in the question.
A. $\sin A\cos C+\cos A\sin C$
Substituting the values of$\sin A,\cos A,\sin C,\cos C$in the above expression we get,
$\begin{align}
& \dfrac{1}{2}\left( \dfrac{1}{2} \right)+\dfrac{\sqrt{3}}{2}\left( \dfrac{\sqrt{3}}{2} \right) \\
& =\dfrac{1}{4}+\dfrac{3}{4} \\
& =1 \\
\end{align}$
B. $\cos A\cos C-\sin A\sin C$
Substituting the values of$\sin A,\cos A,\sin C,\cos C$in the above expression we get,
$\begin{align}
& \dfrac{\sqrt{3}}{2}\left( \dfrac{1}{2} \right)-\dfrac{1}{2}\left( \dfrac{\sqrt{3}}{2} \right) \\
& =\dfrac{\sqrt{3}}{4}-\dfrac{\sqrt{3}}{4} \\
& =0 \\
\end{align}$
Note: The other way of solving the above problem is that:
If you carefully look at this expression $\sin A\cos C+\cos A\sin C$you will find this is the expansion of trigonometric identity$\sin \left( A+C \right)$. So, we can write this expression as$\sin \left( A+C \right)$.
From the sum of angles of a triangle we can write$A+C=\pi -B$so we can write$\sin \left( A+C \right)$as$\sin \left( \pi -B \right)$or$\sin B$where the value of$B={{90}^{0}}$.
So, the value of this expression$\sin A\cos C+\cos A\sin C$is $\sin {{90}^{0}}$(or 1).
Similarly, this expression$\cos A\cos C-\sin A\sin C$is the expansion of the identity$\cos \left( A+C \right)$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

