
Where is the incenter of the triangle \[\Delta ABC\]?
(a) A
(b) B
(c) I
(d) C
Answer
563.7k+ views
Hint: We need to find the incenter using definition and its locus. The incenter is defined as the point of intersection of three angular bisectors of the triangle. In other terms, it can be defined as the locus of points which is equidistant from the two sides taken at the time and passes through one vertex of the same sides. In the figure, if BI is the angular bisector of \[\angle ABC\] then \[ID=IF\]. By considering this we need to check which is the incenter of the given triangle.
Complete step-by-step solution
Let us assume that ‘I’ is the incenter of the triangle and we try to prove that BI, AI, CI are angular bisectors.
In the figure, we know that ‘I’ is the center of the circle, and ‘ID’, IE’, ‘IF’ are radii of the circle.
We know that the radii of the circle are always equal we can write,
\[ID=IE=IF\]
Let us consider \[ID=IF\], this means that ‘I’ is equidistant from both the sides ‘AB’ and ‘BC’.
Now let us consider\[IE=IF\], this means that ‘I’ is equidistant from both the sides ‘AB’, ‘CA’.
Now let us consider \[ID=IF\], this means that ‘I’ is equidistant from both the sides ‘BC’, ‘CA’.
Here, we know that if ‘I’ is the incenter of the triangle which lies on the angular bisector it needs to be equidistant from all the sides.
Since ‘I’ is equidistant from all the sides as shown above we can say that that lines ‘AI’, ‘BI’, and ‘CI’ are the angular bisectors of the respective angles.
We proved that ‘I’ is the incenter of the \[\Delta ABC\].
Note:We can solve this problem in the reverse order also. In this case, we consider that the lines ‘AI’, ‘BI’, and ‘CI’ are the angular bisectors of the respective angles and try to prove that \[ID=IE=IF\]. These solution steps include the exact opposite lines we wrote above. This is the second method of solving the question.
Complete step-by-step solution
Let us assume that ‘I’ is the incenter of the triangle and we try to prove that BI, AI, CI are angular bisectors.
In the figure, we know that ‘I’ is the center of the circle, and ‘ID’, IE’, ‘IF’ are radii of the circle.
We know that the radii of the circle are always equal we can write,
\[ID=IE=IF\]
Let us consider \[ID=IF\], this means that ‘I’ is equidistant from both the sides ‘AB’ and ‘BC’.
Now let us consider\[IE=IF\], this means that ‘I’ is equidistant from both the sides ‘AB’, ‘CA’.
Now let us consider \[ID=IF\], this means that ‘I’ is equidistant from both the sides ‘BC’, ‘CA’.
Here, we know that if ‘I’ is the incenter of the triangle which lies on the angular bisector it needs to be equidistant from all the sides.
Since ‘I’ is equidistant from all the sides as shown above we can say that that lines ‘AI’, ‘BI’, and ‘CI’ are the angular bisectors of the respective angles.
We proved that ‘I’ is the incenter of the \[\Delta ABC\].
Note:We can solve this problem in the reverse order also. In this case, we consider that the lines ‘AI’, ‘BI’, and ‘CI’ are the angular bisectors of the respective angles and try to prove that \[ID=IE=IF\]. These solution steps include the exact opposite lines we wrote above. This is the second method of solving the question.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

In which state Jews are not considered minors?

What is Ornithophobia?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

