
In which of the following transitions will the wavelength be minimum?
(A) n=6 to n=4
(B) n=4 to n=2
(C) n=3 to n=1
(D) n=2 to n=1
Answer
451.4k+ views
Hint: Think about the particles present in an atom and the forces present in an atom. In the question, n is the principal quantum number. We have the formula for calculating wavelength of a photon as $\dfrac{1}{\lambda }=R\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)$. Wavelength of photon is inversely proportional to $\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)$. Use this relation to get the answer.
Complete step by step answer:
- In an atom, electrons and nucleus are present along with other subatomic particles. Electrons revolve around the nucleus because of the nuclear force of attraction.
- For an electron to undergo electronic transition from lower energy level to higher energy level, energy is required. If an electron jumps from higher energy level to lower energy level then, energy is given out in the form of photons.
- In the question, we can see that all transitions are taking place from higher energy levels to lower energy levels. Hence, photons are emitted out in each of the transitions.
- For calculating wavelength of a photon, we have the formula, $\dfrac{1}{\lambda }=R\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)$
- For minimum wavelength, $\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)$ should be maximum.
(A) n=6 to n=4
\[\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)=\dfrac{1}{{{4}^{2}}}-\dfrac{1}{{{6}^{2}}}=\dfrac{1}{16}-\dfrac{1}{36}=0.035\]
(B) n=4 to n=2
\[\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)=\dfrac{1}{{{2}^{2}}}-\dfrac{1}{{{4}^{2}}}=\dfrac{1}{4}-\dfrac{1}{16}=0.1875\]
(C) n=3 to n=1
\[\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)=\dfrac{1}{{{1}^{2}}}-\dfrac{1}{{{3}^{2}}}=\dfrac{1}{1}-\dfrac{1}{9}=0.8889\]
(D) n=2 to n=1
\[\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)=\dfrac{1}{{{1}^{2}}}-\dfrac{1}{{{2}^{2}}}=\dfrac{1}{1}-\dfrac{1}{4}=0.75\]
- The transition n=3 to n=1 has the highest value of $\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)$ that is 0.8889.
- Therefore, n = 3 to n = 1 transition will have the least wavelength.
So, the correct answer is “Option C”.
Note: Remember energy is inversely proportional to wavelength. For an electron to undergo electronic transition from lower energy level to higher energy level, energy is absorbed. If an electron jumps from higher energy level to lower energy level then, energy is released in the form of photons. So, if in a transition, energy released or absorbed is high then the wavelength is minimum.
Complete step by step answer:
- In an atom, electrons and nucleus are present along with other subatomic particles. Electrons revolve around the nucleus because of the nuclear force of attraction.
- For an electron to undergo electronic transition from lower energy level to higher energy level, energy is required. If an electron jumps from higher energy level to lower energy level then, energy is given out in the form of photons.
- In the question, we can see that all transitions are taking place from higher energy levels to lower energy levels. Hence, photons are emitted out in each of the transitions.
- For calculating wavelength of a photon, we have the formula, $\dfrac{1}{\lambda }=R\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)$
- For minimum wavelength, $\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)$ should be maximum.
(A) n=6 to n=4
\[\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)=\dfrac{1}{{{4}^{2}}}-\dfrac{1}{{{6}^{2}}}=\dfrac{1}{16}-\dfrac{1}{36}=0.035\]
(B) n=4 to n=2
\[\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)=\dfrac{1}{{{2}^{2}}}-\dfrac{1}{{{4}^{2}}}=\dfrac{1}{4}-\dfrac{1}{16}=0.1875\]
(C) n=3 to n=1
\[\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)=\dfrac{1}{{{1}^{2}}}-\dfrac{1}{{{3}^{2}}}=\dfrac{1}{1}-\dfrac{1}{9}=0.8889\]
(D) n=2 to n=1
\[\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)=\dfrac{1}{{{1}^{2}}}-\dfrac{1}{{{2}^{2}}}=\dfrac{1}{1}-\dfrac{1}{4}=0.75\]
- The transition n=3 to n=1 has the highest value of $\left( \dfrac{1}{n_{f}^{2}}-\dfrac{1}{n_{i}^{2}} \right)$ that is 0.8889.
- Therefore, n = 3 to n = 1 transition will have the least wavelength.
So, the correct answer is “Option C”.
Note: Remember energy is inversely proportional to wavelength. For an electron to undergo electronic transition from lower energy level to higher energy level, energy is absorbed. If an electron jumps from higher energy level to lower energy level then, energy is released in the form of photons. So, if in a transition, energy released or absorbed is high then the wavelength is minimum.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
