
In which of the following equilibrium, ${{K}_{c}}$ and ${{K}_{p}}$ are not equal?
(A) $2{{C}_{(s)}}+{{O}_{2(g)}}\rightleftharpoons 2C{{O}_{(g)}}$
(B) $2N{{O}_{(g)}}\rightleftharpoons {{N}_{2(g)}}+{{O}_{2(g)}}$
(C) $S{{O}_{2(g)}}+N{{O}_{2(g)}}\rightleftharpoons S{{O}_{3(g)}}+N{{O}_{(g)}}$
(D) ${{H}_{2(g)}}+{{I}_{2(g)}}\rightleftharpoons 2H{{I}_{(g)}}$
Answer
578.7k+ views
Hint: Recollect what is ${{K}_{c}}$ and ${{K}_{p}}$. Find out the relationship between ${{K}_{c}}$ and ${{K}_{p}}$. Then accordingly substitute the values from the chemical reaction and find out the answer.
Complete answer:
-${{K}_{c}}$ and ${{K}_{p}}$ are both equilibrium constants. ${{K}_{c}}$ is measured in terms of molar concentration of reactants and products whereas, ${{K}_{p}}$ is measured in terms of partial pressures of reactants and products.
We know that, \[~{{\text{K}}_{\text{c}}}\text{=}\dfrac{\left[ \text{products} \right]}{\left[ \text{reactants} \right]}\] and also, ${{\text{K}}_{\text{p}}}\text{=}\dfrac{\text{partial pressure of products}}{\text{partial pressure of reactants}}$
From ideal gas equation we have,
PV=nRT
\[P=\dfrac{n}{V}RT\]
Concentration, \[C=\dfrac{n}{V}\]. Substituting this in above equation, we get,
\[P=CRT\]
So, when we equate ${{K}_{c}}$ and ${{K}_{p}}$, we obtain the relation,
\[{{K}_{p}}={{K}_{c}}\times {{(RT)}^{\Delta n}}\] where $\Delta n$ is the change in number of moles of gaseous products to number of moles of gaseous reactants. $\Delta n$ should be zero in order to get ${{K}_{p}}={{K}_{c}}$.
Now, let’s calculate $\Delta n$ for each reaction.
For option (A),
\[2{{C}_{(s)}}+{{O}_{2(g)}}\rightleftharpoons 2C{{O}_{(g)}}\]
$\Delta n=2-3=-1$
So, ${{K}_{p}}\ne {{K}_{c}}$
For option (B),
\[2N{{O}_{(g)}}\rightleftharpoons {{N}_{2(g)}}+{{O}_{2(g)}}\]
$\Delta n=2-2=0$
So, ${{K}_{p}}={{K}_{c}}$
For option (C),
\[S{{O}_{2(g)}}+N{{O}_{2(g)}}\rightleftharpoons S{{O}_{3(g)}}+N{{O}_{(g)}}\]
$\Delta n=2-2=0$
So, ${{K}_{p}}={{K}_{c}}$
For option (D),
${{H}_{2(g)}}+{{I}_{2(g)}}\rightleftharpoons 2H{{I}_{(g)}}$
$\Delta n=2-2=0$
So, ${{K}_{p}}={{K}_{c}}$
So, we can conclude that, in reaction,
(A) \[2{{C}_{(s)}}+{{O}_{2(g)}}\rightleftharpoons 2C{{O}_{(g)}}\]
${{K}_{c}}$ and ${{K}_{p}}$ are not equal because $\Delta n\ne 0$
Therefore, option (A) is the correct answer.
Note:
Remember the equilibrium concept thoroughly. Make a note of what is partial pressure of a gas and how to derive the relation between both the equilibrium constants. Also, see in which type of problems ${{K}_{c}}$ is used and where ${{K}_{p}}$ is used.
Complete answer:
-${{K}_{c}}$ and ${{K}_{p}}$ are both equilibrium constants. ${{K}_{c}}$ is measured in terms of molar concentration of reactants and products whereas, ${{K}_{p}}$ is measured in terms of partial pressures of reactants and products.
We know that, \[~{{\text{K}}_{\text{c}}}\text{=}\dfrac{\left[ \text{products} \right]}{\left[ \text{reactants} \right]}\] and also, ${{\text{K}}_{\text{p}}}\text{=}\dfrac{\text{partial pressure of products}}{\text{partial pressure of reactants}}$
From ideal gas equation we have,
PV=nRT
\[P=\dfrac{n}{V}RT\]
Concentration, \[C=\dfrac{n}{V}\]. Substituting this in above equation, we get,
\[P=CRT\]
So, when we equate ${{K}_{c}}$ and ${{K}_{p}}$, we obtain the relation,
\[{{K}_{p}}={{K}_{c}}\times {{(RT)}^{\Delta n}}\] where $\Delta n$ is the change in number of moles of gaseous products to number of moles of gaseous reactants. $\Delta n$ should be zero in order to get ${{K}_{p}}={{K}_{c}}$.
Now, let’s calculate $\Delta n$ for each reaction.
For option (A),
\[2{{C}_{(s)}}+{{O}_{2(g)}}\rightleftharpoons 2C{{O}_{(g)}}\]
$\Delta n=2-3=-1$
So, ${{K}_{p}}\ne {{K}_{c}}$
For option (B),
\[2N{{O}_{(g)}}\rightleftharpoons {{N}_{2(g)}}+{{O}_{2(g)}}\]
$\Delta n=2-2=0$
So, ${{K}_{p}}={{K}_{c}}$
For option (C),
\[S{{O}_{2(g)}}+N{{O}_{2(g)}}\rightleftharpoons S{{O}_{3(g)}}+N{{O}_{(g)}}\]
$\Delta n=2-2=0$
So, ${{K}_{p}}={{K}_{c}}$
For option (D),
${{H}_{2(g)}}+{{I}_{2(g)}}\rightleftharpoons 2H{{I}_{(g)}}$
$\Delta n=2-2=0$
So, ${{K}_{p}}={{K}_{c}}$
So, we can conclude that, in reaction,
(A) \[2{{C}_{(s)}}+{{O}_{2(g)}}\rightleftharpoons 2C{{O}_{(g)}}\]
${{K}_{c}}$ and ${{K}_{p}}$ are not equal because $\Delta n\ne 0$
Therefore, option (A) is the correct answer.
Note:
Remember the equilibrium concept thoroughly. Make a note of what is partial pressure of a gas and how to derive the relation between both the equilibrium constants. Also, see in which type of problems ${{K}_{c}}$ is used and where ${{K}_{p}}$ is used.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

