Answer
Verified
492k+ views
Hint – In this question the principal amount is given to us and we need to tell the time in which this amount gets hiked to Rs.7500 if interest is reckoned at $7\dfrac{1}{2}$% per annum. Use the direct formula for Simple interest to calculate the time in which the principal value hikes up.
Complete step-by-step answer:
Given data
Principal amount (P) $ = Rs.7500$
Amount (A) after interest $ = Rs.8625$
Rate (r) of interest $7\dfrac{1}{2}$ % per annum
$ \Rightarrow r = \dfrac{{\left( {7 \times 2} \right) + 1}}{2} = \dfrac{{15}}{2}$ %.
Now as we know that the formula to calculate simple interest (S.I) is
$ \Rightarrow S.I = \dfrac{{P.r.t}}{{100}}$ …………………………. (1)
Where t = time in years.
r = rate of interest.
P = principal amount.
And the amount after simple interest is the sum of principal amount and simple interest.
$ \Rightarrow A = P + S.I$
$ \Rightarrow S.I = A - P = 8625 - 7500 = 1125\;Rs.$
Now substitute all the values in equation (1) we have,
$ \Rightarrow 1125 = \dfrac{{7500 \times \dfrac{{15}}{2} \times t}}{{100}}$
Now simplify the above equation we have,
$ \Rightarrow t = \dfrac{{112500 \times 2}}{{7500 \times 15}} = \dfrac{{15 \times 2}}{{15}} = 2$ years.
So, in 2 years Rs.7500 becomes Rs.8625.
So, this is the required answer.
Note – Whenever we face such types of problems the key point is simply to have a good gist of the direct basic formula for Simple Interest, an interest compounded annually is different from a simple interest calculated annually. Use this concept to reach the solution.
Complete step-by-step answer:
Given data
Principal amount (P) $ = Rs.7500$
Amount (A) after interest $ = Rs.8625$
Rate (r) of interest $7\dfrac{1}{2}$ % per annum
$ \Rightarrow r = \dfrac{{\left( {7 \times 2} \right) + 1}}{2} = \dfrac{{15}}{2}$ %.
Now as we know that the formula to calculate simple interest (S.I) is
$ \Rightarrow S.I = \dfrac{{P.r.t}}{{100}}$ …………………………. (1)
Where t = time in years.
r = rate of interest.
P = principal amount.
And the amount after simple interest is the sum of principal amount and simple interest.
$ \Rightarrow A = P + S.I$
$ \Rightarrow S.I = A - P = 8625 - 7500 = 1125\;Rs.$
Now substitute all the values in equation (1) we have,
$ \Rightarrow 1125 = \dfrac{{7500 \times \dfrac{{15}}{2} \times t}}{{100}}$
Now simplify the above equation we have,
$ \Rightarrow t = \dfrac{{112500 \times 2}}{{7500 \times 15}} = \dfrac{{15 \times 2}}{{15}} = 2$ years.
So, in 2 years Rs.7500 becomes Rs.8625.
So, this is the required answer.
Note – Whenever we face such types of problems the key point is simply to have a good gist of the direct basic formula for Simple Interest, an interest compounded annually is different from a simple interest calculated annually. Use this concept to reach the solution.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE