
In $\vartriangle $PQR, right angled at Q, PR+QR =25 cm and PQ = 5 cm. Determine the values of sinP, cosP and tanP.
${\text{A}}{\text{. }}\sin {\text{P}} = \dfrac{{11}}{{13}},\cos {\text{P}} = \dfrac{4}{{13}}$ and $\tan {\text{P}} = \dfrac{{12}}{5}$
${\text{B}}{\text{. }}\sin {\text{P}} = \dfrac{{11}}{{13}},\cos {\text{P}} = \dfrac{5}{{13}}$ and $\tan {\text{P}} = \dfrac{{17}}{5}$
${\text{C}}{\text{. }}\sin {\text{P}} = \dfrac{{12}}{{13}},\cos {\text{P}} = \dfrac{4}{{13}}$ and $\tan {\text{P}} = \dfrac{{17}}{5}$
${\text{D}}{\text{.}}$ None of these
Answer
613.2k+ views
Hint: Here, we will proceed by finding the remaining two sides i.e., QR and PR using the Pythagoras Theorem i.e., ${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}$ and then using the formulas $\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$, $\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}$ and $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$.
Complete step-by-step answer:
Given, In right angled $\vartriangle $PQR, PR + QR =25 cm and PQ = 5 cm
According to Pythagoras Theorem in any right angled triangle, we can write
${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}$
Using the above formula in right angled triangle PQR, we have
$
\Rightarrow {\left( {{\text{PR}}} \right)^2} = {\left( {{\text{PQ}}} \right)^2} + {\left( {{\text{QR}}} \right)^2} \\
\Rightarrow {\left( {{\text{PR}}} \right)^2} = {\left( {\text{5}} \right)^2} + {\left( {{\text{QR}}} \right)^2}{\text{ }} \to {\text{(1)}} \\
$
PR + QR = 25
$ \Rightarrow $QR = (25 - PR) $ \to (2)$
By substituting equation (2) in equation (1), we get
\[
\Rightarrow {\left( {{\text{PR}}} \right)^2} = {\left( {\text{5}} \right)^2} + {\left( {{\text{25}} - {\text{PR}}} \right)^2} \\
\Rightarrow {\left( {{\text{PR}}} \right)^2} = 25 + {\left( {{\text{25}}} \right)^2} + {\left( {{\text{PR}}} \right)^2} - 2\left( {25} \right)\left( {{\text{PR}}} \right) \\
\Rightarrow {\left( {{\text{PR}}} \right)^2} = 25 + 625 + {\left( {{\text{PR}}} \right)^2} - 50\left( {{\text{PR}}} \right) \\
\Rightarrow {\left( {{\text{PR}}} \right)^2} - {\left( {{\text{PR}}} \right)^2} + 50\left( {{\text{PR}}} \right) = 650 \\
\Rightarrow 50\left( {{\text{PR}}} \right) = 650 \\
\Rightarrow {\text{PR}} = \dfrac{{650}}{{50}} = 13{\text{ cm}} \\
\]
Put PR = 13 in equation (2), we get
$ \Rightarrow $QR = (25 - 13) = 12 cm
According to the definitions of sine, cosine and tangent trigonometric functions in any right angled triangle, we can write
$\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$, $\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}$ and $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$
In right angled triangle PQR,
$\sin {\text{P}} = \dfrac{{{\text{QR}}}}{{{\text{PR}}}} = \dfrac{{12}}{{13}}$, $\cos {\text{P}} = \dfrac{{{\text{PQ}}}}{{{\text{PR}}}} = \dfrac{5}{{13}}$ and $\tan {\text{P}} = \dfrac{{{\text{QR}}}}{{{\text{PQ}}}} = \dfrac{{12}}{5}$
Therefore, $\sin {\text{P}} = \dfrac{{12}}{{13}}$, $\cos {\text{P}} = \dfrac{5}{{13}}$ and $\tan {\text{P}} = \dfrac{{12}}{5}$
Hence, option D is correct.
Note- In any right angled triangle, the side opposite to the right angle is the hypotenuse, the side opposite to the considered angle is the perpendicular and the remaining side is the base. In this particular problem, side PR is the hypotenuse, side QR is the perpendicular for angle P and side PQ is the base for angle P.
Complete step-by-step answer:
Given, In right angled $\vartriangle $PQR, PR + QR =25 cm and PQ = 5 cm
According to Pythagoras Theorem in any right angled triangle, we can write
${\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}$
Using the above formula in right angled triangle PQR, we have
$
\Rightarrow {\left( {{\text{PR}}} \right)^2} = {\left( {{\text{PQ}}} \right)^2} + {\left( {{\text{QR}}} \right)^2} \\
\Rightarrow {\left( {{\text{PR}}} \right)^2} = {\left( {\text{5}} \right)^2} + {\left( {{\text{QR}}} \right)^2}{\text{ }} \to {\text{(1)}} \\
$
PR + QR = 25
$ \Rightarrow $QR = (25 - PR) $ \to (2)$
By substituting equation (2) in equation (1), we get
\[
\Rightarrow {\left( {{\text{PR}}} \right)^2} = {\left( {\text{5}} \right)^2} + {\left( {{\text{25}} - {\text{PR}}} \right)^2} \\
\Rightarrow {\left( {{\text{PR}}} \right)^2} = 25 + {\left( {{\text{25}}} \right)^2} + {\left( {{\text{PR}}} \right)^2} - 2\left( {25} \right)\left( {{\text{PR}}} \right) \\
\Rightarrow {\left( {{\text{PR}}} \right)^2} = 25 + 625 + {\left( {{\text{PR}}} \right)^2} - 50\left( {{\text{PR}}} \right) \\
\Rightarrow {\left( {{\text{PR}}} \right)^2} - {\left( {{\text{PR}}} \right)^2} + 50\left( {{\text{PR}}} \right) = 650 \\
\Rightarrow 50\left( {{\text{PR}}} \right) = 650 \\
\Rightarrow {\text{PR}} = \dfrac{{650}}{{50}} = 13{\text{ cm}} \\
\]
Put PR = 13 in equation (2), we get
$ \Rightarrow $QR = (25 - 13) = 12 cm
According to the definitions of sine, cosine and tangent trigonometric functions in any right angled triangle, we can write
$\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$, $\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}$ and $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$
In right angled triangle PQR,
$\sin {\text{P}} = \dfrac{{{\text{QR}}}}{{{\text{PR}}}} = \dfrac{{12}}{{13}}$, $\cos {\text{P}} = \dfrac{{{\text{PQ}}}}{{{\text{PR}}}} = \dfrac{5}{{13}}$ and $\tan {\text{P}} = \dfrac{{{\text{QR}}}}{{{\text{PQ}}}} = \dfrac{{12}}{5}$
Therefore, $\sin {\text{P}} = \dfrac{{12}}{{13}}$, $\cos {\text{P}} = \dfrac{5}{{13}}$ and $\tan {\text{P}} = \dfrac{{12}}{5}$
Hence, option D is correct.
Note- In any right angled triangle, the side opposite to the right angle is the hypotenuse, the side opposite to the considered angle is the perpendicular and the remaining side is the base. In this particular problem, side PR is the hypotenuse, side QR is the perpendicular for angle P and side PQ is the base for angle P.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

