
In $\vartriangle ABC, (\dfrac{{{a^2}}}{{\sin A}} + \dfrac{{{b^2}}}{{\sin B}} + \dfrac{{{c^2}}}{{\sin C}}).\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}$ simplifies to
A) 2$\vartriangle $
B) $\vartriangle $
C) $\dfrac{\vartriangle }{2}$
D) $\dfrac{\vartriangle }{4}$
Answer
596.1k+ views
Hint:In this question we will be using the application of trigonometry. Apply the formula and expand the given equation to solve it.
Complete step-by-step answer:
First we will divide our question in two parts as
Let the first part be $(\dfrac{{{a^2}}}{{\sin A}} + \dfrac{{{b^2}}}{{\sin B}} + \dfrac{{{c^2}}}{{\sin C}})$
And second part be $\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}$
As we know that the radius of circumscribed circle is defined as:
$R = \dfrac{a}{{2\sin A}} = \dfrac{b}{{2\sin B}} = \dfrac{c}{{2\sin C}}$
From the above equation we write:
a=$2R\sin A$
b=$2R\sin B$
c=$2R\sin C$
Put the values of a, b and c in the above equation:
$\dfrac{{{a^2}}}{{\sin A}} = \dfrac{{{b^2}}}{{\sin B}} = \dfrac{{{c^2}}}{{\sin C}} = 4{R^2}(\sin A + \sin B + \sin C)$…………………. (1)
Now, we know that the area of the triangle is
$\vartriangle = \dfrac{1}{2}bc\sin A = \dfrac{1}{2}ac\sin B = \dfrac{1}{2}ab\sin C$
$\sin A = \dfrac{{2\vartriangle }}{{bc}},\sin B = \dfrac{{2\vartriangle }}{{ac}},\sin C = \dfrac{{2\vartriangle }}{{ab}}$
Now, we will put the value of sinA , sinB and sinC in (1), we get
=$4{R^2}(\dfrac{{2\vartriangle }}{{bc}} + \dfrac{{2\vartriangle }}{{ac}} + \dfrac{{2\vartriangle }}{{ab}})$
Taking 2$\vartriangle $ common and taking LCM
=$\dfrac{{8\vartriangle {R^2}}}{{abc}}(a + b + c)$
=$\dfrac{{16\vartriangle S{R^2}}}{{abc}}$ [ since a+b+c=2S]……………… (a)
Now,
$\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}$
= $$\sqrt {\dfrac{{(s - b)(s - c)}}{{bc}}} \sqrt {\dfrac{{(s - a)(s - c)}}{{ca}}} \sqrt {\dfrac{{(s - a)(s - b)}}{{ab}}} $$
On solving, we get
=$\dfrac{{(s - a)(s - b)(s - c)}}{{abc}}$……………….. (b)
Now, we will find the product of (a) and (b)
$\dfrac{{16\vartriangle S{R^2}}}{{abc}} \times \dfrac{{(s - a)(s - b)(s - c)}}{{abc}} = \dfrac{{16{\vartriangle ^3}{R^2}}}{{{{(abc)}^2}}}$
=$\dfrac{{16{\vartriangle ^3}}}{{{{(abc)}^2}}} \times \dfrac{{{{(abc)}^2}}}{{16{\vartriangle ^2}}}$
=$\vartriangle $
Note:
Individually solve the two parts of the question and then find the result, after that multiply the results obtained, use the formulas carefully.
Complete step-by-step answer:
First we will divide our question in two parts as
Let the first part be $(\dfrac{{{a^2}}}{{\sin A}} + \dfrac{{{b^2}}}{{\sin B}} + \dfrac{{{c^2}}}{{\sin C}})$
And second part be $\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}$
As we know that the radius of circumscribed circle is defined as:
$R = \dfrac{a}{{2\sin A}} = \dfrac{b}{{2\sin B}} = \dfrac{c}{{2\sin C}}$
From the above equation we write:
a=$2R\sin A$
b=$2R\sin B$
c=$2R\sin C$
Put the values of a, b and c in the above equation:
$\dfrac{{{a^2}}}{{\sin A}} = \dfrac{{{b^2}}}{{\sin B}} = \dfrac{{{c^2}}}{{\sin C}} = 4{R^2}(\sin A + \sin B + \sin C)$…………………. (1)
Now, we know that the area of the triangle is
$\vartriangle = \dfrac{1}{2}bc\sin A = \dfrac{1}{2}ac\sin B = \dfrac{1}{2}ab\sin C$
$\sin A = \dfrac{{2\vartriangle }}{{bc}},\sin B = \dfrac{{2\vartriangle }}{{ac}},\sin C = \dfrac{{2\vartriangle }}{{ab}}$
Now, we will put the value of sinA , sinB and sinC in (1), we get
=$4{R^2}(\dfrac{{2\vartriangle }}{{bc}} + \dfrac{{2\vartriangle }}{{ac}} + \dfrac{{2\vartriangle }}{{ab}})$
Taking 2$\vartriangle $ common and taking LCM
=$\dfrac{{8\vartriangle {R^2}}}{{abc}}(a + b + c)$
=$\dfrac{{16\vartriangle S{R^2}}}{{abc}}$ [ since a+b+c=2S]……………… (a)
Now,
$\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}$
= $$\sqrt {\dfrac{{(s - b)(s - c)}}{{bc}}} \sqrt {\dfrac{{(s - a)(s - c)}}{{ca}}} \sqrt {\dfrac{{(s - a)(s - b)}}{{ab}}} $$
On solving, we get
=$\dfrac{{(s - a)(s - b)(s - c)}}{{abc}}$……………….. (b)
Now, we will find the product of (a) and (b)
$\dfrac{{16\vartriangle S{R^2}}}{{abc}} \times \dfrac{{(s - a)(s - b)(s - c)}}{{abc}} = \dfrac{{16{\vartriangle ^3}{R^2}}}{{{{(abc)}^2}}}$
=$\dfrac{{16{\vartriangle ^3}}}{{{{(abc)}^2}}} \times \dfrac{{{{(abc)}^2}}}{{16{\vartriangle ^2}}}$
=$\vartriangle $
Note:
Individually solve the two parts of the question and then find the result, after that multiply the results obtained, use the formulas carefully.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

