Answer
Verified
445.5k+ views
Hint: Here we will use the law of similarity for two triangles. This law will establish the ratio of corresponding sides. This helps to find the length of AD. Also make use of the pythagoras theorem to find the lengths of the sides.
Complete step-by-step answer:
In the above diagram first we will compute the length of BC by using Pythagoras theorem.
AB= 5 cm and AC = 12 cm
BC = ?
According to the Pythagoras theorem for right angled triangle ABC, we have,
\[
B{C^2} = A{B^2} + A{C^2} \\
\Rightarrow B{C^2} = {5^2} + {12^2} \\
\Rightarrow BC = \sqrt {169} \\
\Rightarrow BC = 13cm \\
\]
Now in $\vartriangle ABC and \vartriangle ADC$
$\angle C$ is a common angle.
And $\angle A = \angle D = {90^0}$ (AD is perpendicular to BC)
Therefore, $\vartriangle ABC \sim \vartriangle ADC$ means both triangles are similar by AA similarity criterion.
Therefore, the property of similar triangles ratio of the corresponding sides of the two triangles will be equal. Thus in other words, we can write,
$
\dfrac{{AD}}{{AB}} = \dfrac{{AC}}{{BC}} \\
\Rightarrow AD = \dfrac{{AB \times AC}}{{BC}} \\
\Rightarrow AD = \dfrac{{12 \times 5}}{{13}} \\
\Rightarrow AD = \dfrac{{60}}{{13}} \\
$(Transforming by algebra rules and putting the known values.)
Thus the length of AD will be $\dfrac{{60}}{{13}}$cm.
Therefore, the correct answer is option (1).
Note: This question is a simple application of the law of similarity in the triangles. Furthermore many problems of geometry can be solved by using these laws. Not only can this one find the missing angles of any triangle. One interesting fact about the similar triangles that their areas are also in the ratio of their altitudes also.
Complete step-by-step answer:
In the above diagram first we will compute the length of BC by using Pythagoras theorem.
AB= 5 cm and AC = 12 cm
BC = ?
According to the Pythagoras theorem for right angled triangle ABC, we have,
\[
B{C^2} = A{B^2} + A{C^2} \\
\Rightarrow B{C^2} = {5^2} + {12^2} \\
\Rightarrow BC = \sqrt {169} \\
\Rightarrow BC = 13cm \\
\]
Now in $\vartriangle ABC and \vartriangle ADC$
$\angle C$ is a common angle.
And $\angle A = \angle D = {90^0}$ (AD is perpendicular to BC)
Therefore, $\vartriangle ABC \sim \vartriangle ADC$ means both triangles are similar by AA similarity criterion.
Therefore, the property of similar triangles ratio of the corresponding sides of the two triangles will be equal. Thus in other words, we can write,
$
\dfrac{{AD}}{{AB}} = \dfrac{{AC}}{{BC}} \\
\Rightarrow AD = \dfrac{{AB \times AC}}{{BC}} \\
\Rightarrow AD = \dfrac{{12 \times 5}}{{13}} \\
\Rightarrow AD = \dfrac{{60}}{{13}} \\
$(Transforming by algebra rules and putting the known values.)
Thus the length of AD will be $\dfrac{{60}}{{13}}$cm.
Therefore, the correct answer is option (1).
Note: This question is a simple application of the law of similarity in the triangles. Furthermore many problems of geometry can be solved by using these laws. Not only can this one find the missing angles of any triangle. One interesting fact about the similar triangles that their areas are also in the ratio of their altitudes also.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths