
In triangle ABC, XY||AC and divides the triangle into two parts of equal areas. Find the ratio of AX and AB.
Answer
606.3k+ views
Hint: In this question, properties of similar triangles will be used. The properties state that-
The corresponding sides of similar triangles are in proportion. …(1)
The areas of similar triangles are in proportion to the square of their corresponding sides. …(2)
Complete step-by-step answer:
The figure of the triangle is as follows-
XY||AC and ar(AXYC)=ar(BXY)
So, ar(∆ACB) = 2ar(∆XYB)...(3)
In ∆ABC and ∆XBY,
$\angle\mathrm B\;\mathrm{is}\;\mathrm{common}\\\mathrm{XY}\vert\vert\mathrm{AC},\;\mathrm{so}\;\angle\mathrm{BXY}\;\mathrm{and}\;\angle\mathrm{BAC}\;\mathrm{are}\;\mathrm{corresponding}\;\mathrm{angles}\\\angle\mathrm{BXY}=\angle\mathrm{BAC}$
By AA similarity,
∆ABC~∆XBY
Hence, by corresponding parts of similar triangles-
By theorem (2),
$\dfrac{\mathrm{ar}\left(\triangle\mathrm{ABC}\right)}{\mathrm{ar}\left(\triangle\mathrm{XBY}\right)}=\left(\dfrac{\mathrm{AB}}{\mathrm{XB}}\right)^2\\\mathrm{By}\;\mathrm{equation}\left(3\right),\\\left(\dfrac{\mathrm{AB}}{\mathrm{XB}}\right)^2=2\\\dfrac{\mathrm{AB}}{\mathrm{XB}}=\sqrt2\\\mathrm{BX}=\mathrm{AB}-\mathrm{AX}\\\dfrac{\mathrm{AB}-\mathrm{AX}}{\mathrm{AB}}=\dfrac1{\sqrt2}\\1-\dfrac{\mathrm{AX}}{\mathrm{AB}}=\dfrac1{\sqrt2}\\\dfrac{\mathrm{AX}}{\mathrm{AB}}=1-\dfrac1{\sqrt2}=\dfrac{\sqrt2-1}{\sqrt2}\\\dfrac{\mathrm{AB}}{\mathrm{AX}}=\dfrac{\sqrt2}{\sqrt2-1}$
Hence the ratio of AX and AB is $\sqrt2-1:\sqrt2$
Note:To solve this problem, one should have a knowledge of similarity of triangles and ratios. Be sure to change the answer into ratio form. Do not assume the triangles to be similar. Prove the similarity by AA similarity.
The corresponding sides of similar triangles are in proportion. …(1)
The areas of similar triangles are in proportion to the square of their corresponding sides. …(2)
Complete step-by-step answer:
The figure of the triangle is as follows-
XY||AC and ar(AXYC)=ar(BXY)
So, ar(∆ACB) = 2ar(∆XYB)...(3)
In ∆ABC and ∆XBY,
$\angle\mathrm B\;\mathrm{is}\;\mathrm{common}\\\mathrm{XY}\vert\vert\mathrm{AC},\;\mathrm{so}\;\angle\mathrm{BXY}\;\mathrm{and}\;\angle\mathrm{BAC}\;\mathrm{are}\;\mathrm{corresponding}\;\mathrm{angles}\\\angle\mathrm{BXY}=\angle\mathrm{BAC}$
By AA similarity,
∆ABC~∆XBY
Hence, by corresponding parts of similar triangles-
By theorem (2),
$\dfrac{\mathrm{ar}\left(\triangle\mathrm{ABC}\right)}{\mathrm{ar}\left(\triangle\mathrm{XBY}\right)}=\left(\dfrac{\mathrm{AB}}{\mathrm{XB}}\right)^2\\\mathrm{By}\;\mathrm{equation}\left(3\right),\\\left(\dfrac{\mathrm{AB}}{\mathrm{XB}}\right)^2=2\\\dfrac{\mathrm{AB}}{\mathrm{XB}}=\sqrt2\\\mathrm{BX}=\mathrm{AB}-\mathrm{AX}\\\dfrac{\mathrm{AB}-\mathrm{AX}}{\mathrm{AB}}=\dfrac1{\sqrt2}\\1-\dfrac{\mathrm{AX}}{\mathrm{AB}}=\dfrac1{\sqrt2}\\\dfrac{\mathrm{AX}}{\mathrm{AB}}=1-\dfrac1{\sqrt2}=\dfrac{\sqrt2-1}{\sqrt2}\\\dfrac{\mathrm{AB}}{\mathrm{AX}}=\dfrac{\sqrt2}{\sqrt2-1}$
Hence the ratio of AX and AB is $\sqrt2-1:\sqrt2$
Note:To solve this problem, one should have a knowledge of similarity of triangles and ratios. Be sure to change the answer into ratio form. Do not assume the triangles to be similar. Prove the similarity by AA similarity.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest States of India?

What is the theme or message of the poem The road not class 9 english CBSE

What are the major achievements of the UNO class 9 social science CBSE

Explain the importance of pH in everyday life class 9 chemistry CBSE

Differentiate between parenchyma collenchyma and sclerenchyma class 9 biology CBSE

Give 5 examples of refraction of light in daily life

