
In the trapezium ABC, $\text{AB}\parallel \text{DA}$ and $\text{DC=2AB}$ .EF drawn parallel to AB cuts AD in F and BC in E such that $\dfrac{\text{BE}}{\text{EC}}=\dfrac{\text{3}}{4}$ . Diagonal DB intersects EF at G. Prove that, $7\text{FE=10AB}$ .
Answer
582k+ views
Hint: In the given question we can solve the question by proving triangle DFG and triangle DAB are similar to each other and in the similar triangles ratio of corresponding sides are equal.
Complete step by step answer:
In triangle DFG and triangle DAB
$\angle DFG=\angle DAB$ $\left\{ \begin{align}
& \because FG||AB\, \\
& \therefore \angle DFG=\angle DAB\,\text{due}\,\text{to}\,\text{corresponding}\,\text{angle} \\
\end{align} \right\}$
$\angle ADB=\angle FDG$ $\left\{ \because \,Common\,Angle \right\}$
$\therefore \angle DGF=\angle DBA$
So By AA similarity we can say \[\Delta DFG\approx \Delta DAB\]
So we can say the ratio of corresponding sides is equal.
$\dfrac{DF}{DA}=\dfrac{FG}{AB}$ .......................................................(i)
As in trapezium $EF||AB||DC$
$\dfrac{AF}{DF}=\dfrac{BE}{EC}$
As given in question $\dfrac{BE}{EC}=\dfrac{3}{4}$
So we can write
$\dfrac{AF}{DF}=\dfrac{3}{4}$
On adding 1 in both side of equation
$\dfrac{AF}{DF}+1=\dfrac{3}{4}+1$
$\dfrac{AF+DF}{DF}=\dfrac{3+4}{4}$
$\dfrac{AD}{DF}=\dfrac{7}{4}$ $\left\{ \because AF+FD=AD \right\}$
$\dfrac{DF}{AD}=\dfrac{4}{7}$
We can use this value in equation (i)
Hence we have
$\dfrac{FG}{AB}=\dfrac{4}{7}$
$FG=\dfrac{4}{7}AB$......................................(ii)
Now in triangle compare $\Delta \text{BEG}$ and $\Delta \text{BCD}$ $\angle \text{BEG=}\angle \text{BCD}$ [corresponding angles ]
$\angle \text{B}=\angle \text{B}$ [ Common in both triangle ]
Now by AA criterion both and are similar.
$\therefore $$\Delta \text{BEG}$$\sim $ $\Delta \text{BCD}$ .
That will give us $\dfrac{\text{BE}}{\text{BC}}=\dfrac{\text{EG}}{\text{CD}}$ [similarity triangle]
Now we have given $\dfrac{\text{BE}}{\text{EC}}=\dfrac{\text{3}}{4}$
$\therefore $ $\dfrac{\text{EC}}{\text{BE}}$ $=\dfrac{4}{3}$
Add one both side $\dfrac{\text{EC}}{\text{BE}}+1=\dfrac{4}{3}+1$
$\dfrac{\text{EC+BE}}{\text{BE}}=\dfrac{4+3}{3}$
$\dfrac{\text{BC}}{\text{BE}}=\dfrac{7}{3}\text{ }\!\![\!\!\text{ BE+EC=BC }\!\!]\!\!\text{ }$
So, $\dfrac{\text{BE}}{\text{BC}}=\dfrac{3}{7}$
Got, $\dfrac{\text{BE}}{\text{BC}}=\dfrac{\text{EG}}{\text{CD}}$
from above calculation
$\dfrac{\text{EG}}{\text{CD}}=\dfrac{3}{7}$
$\text{EG=}\dfrac{3}{7}\times \text{CD}$
We have,$\text{CD=2AB}$ (Given)
$\text{EG=}\dfrac{3}{7}\times \text{2AB}$ ...... (iii)
Now add (ii) and (iii) equations
$\text{FG+EG=}\dfrac{4}{7}\text{AB+}\dfrac{6}{7}\text{AB}$
$\Rightarrow \text{EF=}\dfrac{10}{7}\text{AB}$
$7\text{EF=10AB}$
Note: We can say two triangles are similar if all three sides or all three angles are equal. So if in two triangles two angles are equal then the third angle will also be equal. So from this rule we say triangles are similar to each other by AA similarity.
Complete step by step answer:
In triangle DFG and triangle DAB
$\angle DFG=\angle DAB$ $\left\{ \begin{align}
& \because FG||AB\, \\
& \therefore \angle DFG=\angle DAB\,\text{due}\,\text{to}\,\text{corresponding}\,\text{angle} \\
\end{align} \right\}$
$\angle ADB=\angle FDG$ $\left\{ \because \,Common\,Angle \right\}$
$\therefore \angle DGF=\angle DBA$
So By AA similarity we can say \[\Delta DFG\approx \Delta DAB\]
So we can say the ratio of corresponding sides is equal.
$\dfrac{DF}{DA}=\dfrac{FG}{AB}$ .......................................................(i)
As in trapezium $EF||AB||DC$
$\dfrac{AF}{DF}=\dfrac{BE}{EC}$
As given in question $\dfrac{BE}{EC}=\dfrac{3}{4}$
So we can write
$\dfrac{AF}{DF}=\dfrac{3}{4}$
On adding 1 in both side of equation
$\dfrac{AF}{DF}+1=\dfrac{3}{4}+1$
$\dfrac{AF+DF}{DF}=\dfrac{3+4}{4}$
$\dfrac{AD}{DF}=\dfrac{7}{4}$ $\left\{ \because AF+FD=AD \right\}$
$\dfrac{DF}{AD}=\dfrac{4}{7}$
We can use this value in equation (i)
Hence we have
$\dfrac{FG}{AB}=\dfrac{4}{7}$
$FG=\dfrac{4}{7}AB$......................................(ii)
Now in triangle compare $\Delta \text{BEG}$ and $\Delta \text{BCD}$ $\angle \text{BEG=}\angle \text{BCD}$ [corresponding angles ]
$\angle \text{B}=\angle \text{B}$ [ Common in both triangle ]
Now by AA criterion both and are similar.
$\therefore $$\Delta \text{BEG}$$\sim $ $\Delta \text{BCD}$ .
That will give us $\dfrac{\text{BE}}{\text{BC}}=\dfrac{\text{EG}}{\text{CD}}$ [similarity triangle]
Now we have given $\dfrac{\text{BE}}{\text{EC}}=\dfrac{\text{3}}{4}$
$\therefore $ $\dfrac{\text{EC}}{\text{BE}}$ $=\dfrac{4}{3}$
Add one both side $\dfrac{\text{EC}}{\text{BE}}+1=\dfrac{4}{3}+1$
$\dfrac{\text{EC+BE}}{\text{BE}}=\dfrac{4+3}{3}$
$\dfrac{\text{BC}}{\text{BE}}=\dfrac{7}{3}\text{ }\!\![\!\!\text{ BE+EC=BC }\!\!]\!\!\text{ }$
So, $\dfrac{\text{BE}}{\text{BC}}=\dfrac{3}{7}$
Got, $\dfrac{\text{BE}}{\text{BC}}=\dfrac{\text{EG}}{\text{CD}}$
from above calculation
$\dfrac{\text{EG}}{\text{CD}}=\dfrac{3}{7}$
$\text{EG=}\dfrac{3}{7}\times \text{CD}$
We have,$\text{CD=2AB}$ (Given)
$\text{EG=}\dfrac{3}{7}\times \text{2AB}$ ...... (iii)
Now add (ii) and (iii) equations
$\text{FG+EG=}\dfrac{4}{7}\text{AB+}\dfrac{6}{7}\text{AB}$
$\Rightarrow \text{EF=}\dfrac{10}{7}\text{AB}$
$7\text{EF=10AB}$
Note: We can say two triangles are similar if all three sides or all three angles are equal. So if in two triangles two angles are equal then the third angle will also be equal. So from this rule we say triangles are similar to each other by AA similarity.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

