
In the question given below find
\[\int\limits_0^2 {{{\left( {{x^2} + 2x + 1} \right)}^{\dfrac{3}{2}}}\left( {x + 1} \right)dx = ?} \]
Answer
584.4k+ views
Hint: The first bracket is the perfect square of a term .So substitute it by that term .Then using rules of indices we will cancel the powers. Then proceeding we will calculate the integrals.
Complete step-by-step answer:
Given that,
\[\int\limits_0^2 {{{\left( {{x^2} + 2x + 1} \right)}^{\dfrac{3}{2}}}\left( {x + 1} \right)dx} \]
\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
So the first bracket is a perfect square of \[x + 1\].
\[{\left( {x + 1} \right)^2} = {x^2} + 2x + 1\]
\[
\Rightarrow \int\limits_0^2 {{{\left( {{{\left( {x + 1} \right)}^2}} \right)}^{\dfrac{3}{2}}}\left( {x + 1} \right)dx} \\
\Rightarrow \int\limits_0^2 {{{\left( {x + 1} \right)}^3}\left( {x + 1} \right)dx} \\
\Rightarrow \int\limits_0^2 {{{\left( {x + 1} \right)}^{3 + 1}}dx} \\
\Rightarrow \int\limits_0^2 {{{\left( {x + 1} \right)}^4}dx} \\
\]
Now finding the integrals using the formula,
\[\int {{x^n} = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \]
\[
\Rightarrow \mathop {\left[ {\dfrac{{{{\left( {x + 1} \right)}^{4 + 1}}}}{{4 + 1}}} \right]}\nolimits_0^2 \\
\Rightarrow \left[ {\dfrac{{{{\left( {x + 1} \right)}^5}}}{5}} \right]_0^2 \\
\Rightarrow \dfrac{1}{5}\left[ {{{\left( {x + 1} \right)}^5}} \right]_0^2 \\
\]
Now apply the limits ,
\[
\Rightarrow \dfrac{1}{5}\left[ {{{\left( {2 + 1} \right)}^5} - {{\left( {0 + 1} \right)}^5}} \right] \\
\Rightarrow \dfrac{1}{5}\left[ {{3^5} - {1^5}} \right] \\
\Rightarrow \dfrac{1}{5}\left[ {243 - 1} \right] \\
\Rightarrow \dfrac{{242}}{5} \\
\]
\[\int\limits_0^2 {{{\left( {{x^2} + 2x + 1} \right)}^{\dfrac{3}{2}}}\left( {x + 1} \right)dx} = \dfrac{{242}}{5}\]
Additional information:
Here we have to perform integration but with limits to the function and have to find the value of the given function in between that limit.
Note: Don’t start directly with the integrals try to reduce it to the simplest form and then put up with the integrals. So that it reduces the time for calculations. Use the proper formulas for the integrals.
Complete step-by-step answer:
Given that,
\[\int\limits_0^2 {{{\left( {{x^2} + 2x + 1} \right)}^{\dfrac{3}{2}}}\left( {x + 1} \right)dx} \]
\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
So the first bracket is a perfect square of \[x + 1\].
\[{\left( {x + 1} \right)^2} = {x^2} + 2x + 1\]
\[
\Rightarrow \int\limits_0^2 {{{\left( {{{\left( {x + 1} \right)}^2}} \right)}^{\dfrac{3}{2}}}\left( {x + 1} \right)dx} \\
\Rightarrow \int\limits_0^2 {{{\left( {x + 1} \right)}^3}\left( {x + 1} \right)dx} \\
\Rightarrow \int\limits_0^2 {{{\left( {x + 1} \right)}^{3 + 1}}dx} \\
\Rightarrow \int\limits_0^2 {{{\left( {x + 1} \right)}^4}dx} \\
\]
Now finding the integrals using the formula,
\[\int {{x^n} = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \]
\[
\Rightarrow \mathop {\left[ {\dfrac{{{{\left( {x + 1} \right)}^{4 + 1}}}}{{4 + 1}}} \right]}\nolimits_0^2 \\
\Rightarrow \left[ {\dfrac{{{{\left( {x + 1} \right)}^5}}}{5}} \right]_0^2 \\
\Rightarrow \dfrac{1}{5}\left[ {{{\left( {x + 1} \right)}^5}} \right]_0^2 \\
\]
Now apply the limits ,
\[
\Rightarrow \dfrac{1}{5}\left[ {{{\left( {2 + 1} \right)}^5} - {{\left( {0 + 1} \right)}^5}} \right] \\
\Rightarrow \dfrac{1}{5}\left[ {{3^5} - {1^5}} \right] \\
\Rightarrow \dfrac{1}{5}\left[ {243 - 1} \right] \\
\Rightarrow \dfrac{{242}}{5} \\
\]
\[\int\limits_0^2 {{{\left( {{x^2} + 2x + 1} \right)}^{\dfrac{3}{2}}}\left( {x + 1} \right)dx} = \dfrac{{242}}{5}\]
Additional information:
Here we have to perform integration but with limits to the function and have to find the value of the given function in between that limit.
Note: Don’t start directly with the integrals try to reduce it to the simplest form and then put up with the integrals. So that it reduces the time for calculations. Use the proper formulas for the integrals.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

