
In the given series $\dfrac{1}{2.5.8}+\dfrac{1}{5.8.11}+\dfrac{1}{8.11.14}+...+\text{up to}~n\text{ terms}.$
Find the sum of n terms.
Answer
547.5k+ views
Hint: To find the sum of n terms, first of all we will find the ${{n}^{th}}$ term of the given equation. When we will get the ${{n}^{th}}$ term of the given equation, we will use a summation sign in every term of the ${{n}^{th}}$ term. Since, we used a summation sign that means we got the sum of the given equation up to n terms but if there is any possibility to simplify it, we will get the simplified sum of the given question up to n terms.
Complete step-by-step solution:
Since, the given question is:
$\Rightarrow \dfrac{1}{2.5.8}+\dfrac{1}{5.8.11}+\dfrac{1}{8.11.14}+...+\text{up to}~n\text{ terms}.$
First of all we will get the ${{n}^{th}}term$ of the given equation as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{\left( 3n-1 \right)\left( 3n+2 \right)\left( 3n+5 \right)}$
Now, we will elaborate it by expanding the above equation. When we expand $\left( 3n-1 \right)$ and $\left( 3n+5 \right)$ so that we will get $6$ as a result. So, there we will divide by $3$ in the above equation as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{\left( 3n+2 \right)}\dfrac{1}{6}\left( \dfrac{1}{\left( 3n-1 \right)}-\dfrac{1}{\left( 3n+5 \right)} \right)$
After that we will open the bracket and will multiply $\left( 3n-1 \right)$to the terms that are inside the bracket as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{6}\left( \dfrac{1}{\left( 3n-1 \right)\left( 3n+2 \right)}-\dfrac{1}{\left( 3n+2 \right)\left( 3n+5 \right)} \right)$
Now, again we will separate the in bracketed terms that are in multiplication form as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{3}\left[ \left( \dfrac{1}{\left( 3n-1 \right)}-\dfrac{1}{\left( 3n+2 \right)} \right)-\left( \dfrac{1}{\left( 3n+2 \right)}-\dfrac{1}{\left( 3n+5 \right)} \right) \right]$
Since, we will get $3$when we will use subtraction in both the bracketed terms. So we will divide them by $3$ as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{6}\left[ \dfrac{1}{3}\left( \dfrac{1}{\left( 3n-1 \right)}-\dfrac{1}{\left( 3n+2 \right)} \right)-\dfrac{1}{3}\left( \dfrac{1}{\left( 3n+2 \right)}-\dfrac{1}{\left( 3n+5 \right)} \right) \right]$
Now, we will take out $\dfrac{1}{3}$ as a common factor and will multiply it by $\dfrac{1}{6}$ as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{6}\times \dfrac{1}{3}\left[ \left( \dfrac{1}{\left( 3n-1 \right)}-\dfrac{1}{\left( 3n+2 \right)} \right)-\left( \dfrac{1}{\left( 3n+2 \right)}-\dfrac{1}{\left( 3n+5 \right)} \right) \right]$
$\Rightarrow {{n}^{th}}term=\dfrac{1}{18}\left[ \left( \dfrac{1}{\left( 3n-1 \right)}-\dfrac{1}{\left( 3n+2 \right)} \right)-\left( \dfrac{1}{\left( 3n+2 \right)}-\dfrac{1}{\left( 3n+5 \right)} \right) \right]$
Here, we will solve the bracketed terms by opening the bracket as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3n-1 \right)}-\dfrac{1}{\left( 3n+2 \right)}-\dfrac{1}{\left( 3n+2 \right)}+\dfrac{1}{\left( 3n+5 \right)} \right]$
Now, the above equation will be as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3n-1 \right)}-\dfrac{2}{\left( 3n+2 \right)}+\dfrac{1}{\left( 3n+5 \right)} \right]$
Now, here we will try to find out the value of ever term as:
For first term: $n=1$
$\Rightarrow {{1}^{st}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3\times 1-1 \right)}-\dfrac{2}{\left( 3\times 1+2 \right)}+\dfrac{1}{\left( 3\times 1+5 \right)} \right]$
$\Rightarrow {{1}^{st}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3-1 \right)}-\dfrac{2}{\left( 3+2 \right)}+\dfrac{1}{\left( 3+5 \right)} \right]$
$\Rightarrow {{1}^{st}}term=\dfrac{1}{18}\left[ \dfrac{1}{2}-\dfrac{2}{5}+\dfrac{1}{8} \right]$
For second term: $n=2$
$\Rightarrow {{2}^{nd}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3\times 2-1 \right)}-\dfrac{2}{\left( 3\times 2+2 \right)}+\dfrac{1}{\left( 3\times 2+5 \right)} \right]$
After solving above equation we will get:
$\Rightarrow {{2}^{nd}}term=\dfrac{1}{18}\left[ \dfrac{1}{5}-\dfrac{2}{8}+\dfrac{1}{11} \right]$
For third term: $n=3$
$\Rightarrow {{3}^{rd}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3\times 3-1 \right)}-\dfrac{2}{\left( 3\times 3+2 \right)}+\dfrac{1}{\left( 3\times 3+5 \right)} \right]$
We will have the value of third term after solving the above equation as:
$\Rightarrow {{3}^{rd}}term=\dfrac{1}{18}\left[ \dfrac{1}{8}-\dfrac{2}{11}+\dfrac{1}{14} \right]$
… … … … …
For ${{\left( n-1 \right)}^{th}}term$ : $n=n-1$
$\Rightarrow {{\left( n-1 \right)}^{th}}term=\dfrac{1}{18}\left[ \dfrac{1}{3\left( n-1 \right)-1}-\dfrac{2}{3\left( n-1 \right)+2}+\dfrac{1}{3\left( n-1 \right)+5} \right]$
Now, the ${{\left( n-1 \right)}^{th}}term$ will be as:
$\Rightarrow {{\left( n-1 \right)}^{th}}term=\dfrac{1}{18}\left[ \dfrac{1}{3n-4}-\dfrac{2}{3n-1}+\dfrac{1}{3n+2} \right]$
This process will go up to ${{n}^{th}}term$.
Since, we got all the $n\text{ }terms$ of the given question. Now, we will apply summation sign to get the sum of the given question as:
\[\Rightarrow {{S}_{n}}=\dfrac{1}{18}\left[ \sum\limits_{1}^{n}{\dfrac{1}{\left( 3n-1 \right)}}-\sum\limits_{1}^{n}{\dfrac{2}{\left( 3n+2 \right)}}+\sum\limits_{1}^{n}{\dfrac{1}{\left( 3n+5 \right)}} \right]\]
Now, we will write it as:
$\begin{align}
& \Rightarrow {{S}_{n}}=\dfrac{1}{18}\left[ \dfrac{1}{2}-\dfrac{2}{5}+\dfrac{1}{8} \right]+\dfrac{1}{18}\left[ \dfrac{1}{5}-\dfrac{2}{8}+\dfrac{1}{11} \right]+\dfrac{1}{18}\left[ \dfrac{1}{8}-\dfrac{2}{11}+\dfrac{1}{14} \right]+... \\
& +\dfrac{1}{18}\left[ \dfrac{1}{3n-4}-\dfrac{2}{3n-1}+\dfrac{1}{3n+2} \right]+\dfrac{1}{18}\left[ \dfrac{1}{\left( 3n-1 \right)}-\dfrac{2}{\left( 3n+2 \right)}+\dfrac{1}{\left( 3n+5 \right)} \right] \\
\end{align}$
$\Rightarrow {{S}_{n}}=\dfrac{1}{18}\left[ \dfrac{1}{2}-\dfrac{2}{5}+\dfrac{1}{8}+\dfrac{1}{5}-\dfrac{2}{8}+\dfrac{1}{11}+\dfrac{1}{8}-\dfrac{2}{11}+\dfrac{1}{14}+...+\dfrac{1}{3n-4}-\dfrac{2}{3n-1}+\dfrac{1}{3n+2}+\dfrac{1}{\left( 3n-1 \right)}-\dfrac{2}{\left( 3n+2 \right)}+\dfrac{1}{\left( 3n+5 \right)} \right]$
As we can see that some terms will be canceled. So, we will get the above equation as:
$\Rightarrow {{S}_{n}}=\dfrac{1}{18}\left[ \dfrac{1}{2}-\dfrac{1}{5}-\dfrac{1}{\left( 3n+2 \right)}+\dfrac{1}{\left( 3n+5 \right)} \right]$
Now, we will solve the above equation as:
$\Rightarrow {{S}_{n}}=\dfrac{1}{18}\left[ \dfrac{5-2}{10}-\left( \dfrac{\left( 3n+5 \right)-\left( 3n+2 \right)}{\left( 3n+2 \right)\left( 3n+5 \right)} \right) \right]$
$\Rightarrow {{S}_{n}}=\dfrac{1}{18}\left[ \dfrac{3}{10}-\dfrac{3}{\left( 3n+2 \right)\left( 3n+5 \right)} \right]$
Here, we will take $3$ as common:
$\Rightarrow {{S}_{n}}=\dfrac{3}{18}\left[ \dfrac{1}{10}-\dfrac{1}{\left( 3n+2 \right)\left( 3n+5 \right)} \right]$
Since, we got a sum of the n terms of the given question but we can simplify it further. So, we will use subtraction to solve it as:
$\Rightarrow {{S}_{n}}=\dfrac{1}{6}\left[ \dfrac{\left( 3n+2 \right)\left( 3n+5 \right)-10}{10\left( 3n+2 \right)\left( 3n+5 \right)} \right]$
Now, we will expand the above equation by opening bracket as:
$\Rightarrow {{S}_{n}}=\dfrac{1}{6}\left[ \dfrac{9{{n}^{2}}+6n+15n+10-10}{10\left( 9{{n}^{2}}+6n+15n+10 \right)} \right]$
Now, we will do the necessary calculation as:
$\Rightarrow {{S}_{n}}=\dfrac{1}{6}\left[ \dfrac{9{{n}^{2}}+21n}{\left( 90{{n}^{2}}+210n+100 \right)} \right]$
$\Rightarrow {{S}_{n}}=\dfrac{1}{6}\left[ \dfrac{3\left( 3{{n}^{2}}+7n \right)}{\left( 90{{n}^{2}}+210n+100 \right)} \right]$
$\Rightarrow {{S}_{n}}=\dfrac{3}{6}\left[ \dfrac{n\left( 3n+7 \right)}{\left( 90{{n}^{2}}+210n+100 \right)} \right]$
$\Rightarrow {{S}_{n}}=\dfrac{1}{2}\left[ \dfrac{n\left( 3n+7 \right)}{\left( 90{{n}^{2}}+210n+100 \right)} \right]$
Hence, this is a simplified solution of the sum of n terms of the given equation.
Note: Here, we will use alternative method to check the sum of the given question as:
Since, we will have to find the sum of the given question for infinite terms that is:
$\Rightarrow \dfrac{1}{2.5.8}+\dfrac{1}{5.8.11}+\dfrac{1}{8.11.14}+...$
Here, we will consider the sum of some terms as:
$\Rightarrow \dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...\text{ = }{{S}_{\infty }}$ … $\left( i \right)$
Now, we can change the place of first term and can place them other side of equal sign as:
$\Rightarrow \dfrac{1}{5.8}+\dfrac{1}{8.11}+...\text{ = }{{S}_{\infty }}-\dfrac{1}{2.5}$ … $\left( ii \right)$
Since, we have two equations; we need to subtract equation $\left( i \right)$ from equation $\left( ii \right)$ so that we can solve the question easily as:
\[\begin{align}
& \underline{\begin{align}
& \Rightarrow \dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...\text{ = }{{S}_{\infty }} \\
& \Rightarrow \dfrac{1}{5.8}+\dfrac{1}{8.11}+...\text{ = }{{S}_{\infty }}-\dfrac{1}{2.5} \\
\end{align}} \\
& \Rightarrow \dfrac{6}{2.5.8}+\dfrac{6}{5.8.11}+\dfrac{6}{8.11.14}...\text{ =}\dfrac{1}{2.5} \\
\end{align}\]
Since, $6$ is a common factor in all the terms of the above equation. So, we can take $6$common as:
\[\Rightarrow 6\left( \dfrac{1}{2.5.8}+\dfrac{1}{5.8.11}+\dfrac{1}{8.11.14}+... \right)\text{ =}\dfrac{1}{2.5}\]
As we have $6$ , a common factor in the above equation. So we can divide by $6$ in the above equation as:
\[\Rightarrow \dfrac{6}{6}\left( \dfrac{1}{2.5.8}+\dfrac{1}{5.8.11}+\dfrac{1}{8.11.14}+... \right)\text{ =}\dfrac{1}{2.5}\times \dfrac{1}{6}\]
Here, $6$ will cancel out $6$ and after that we will have the multiplication of $2$ , $5$ and $6$as
\[\Rightarrow \left( \dfrac{1}{2.5.8}+\dfrac{1}{5.8.11}+\dfrac{1}{8.11.14}+... \right)\text{ =}\dfrac{1}{60}\]
Hence, we have $\dfrac{1}{60}$ as the sum of infinite terms of a given question.
Since, from the solution we have ${{n}^{th}}term$ of the given question as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3n-1 \right)}-\dfrac{2}{\left( 3n+2 \right)}+\dfrac{1}{\left( 3n+5 \right)} \right]$
And the sum of the solution is:
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{18}\left[ \dfrac{3}{10}-\dfrac{3}{\left( 3n+2 \right)\left( 3n+5 \right)} \right]$
Since, we will replace n by infinite. So, the second term of the bracket approximately will be equal to zero. Hence we will have:
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{18}\left[ \dfrac{3}{10}-0 \right]$
Now, we will solve the above equation as:
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{18}\times \dfrac{3}{10}$
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{6}\times \dfrac{1}{10}$
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{60}$
Here, we also get the value of the sum of infinite terms of a given question as $\dfrac{1}{60}$ .
Hence, the solution is correct.
Complete step-by-step solution:
Since, the given question is:
$\Rightarrow \dfrac{1}{2.5.8}+\dfrac{1}{5.8.11}+\dfrac{1}{8.11.14}+...+\text{up to}~n\text{ terms}.$
First of all we will get the ${{n}^{th}}term$ of the given equation as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{\left( 3n-1 \right)\left( 3n+2 \right)\left( 3n+5 \right)}$
Now, we will elaborate it by expanding the above equation. When we expand $\left( 3n-1 \right)$ and $\left( 3n+5 \right)$ so that we will get $6$ as a result. So, there we will divide by $3$ in the above equation as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{\left( 3n+2 \right)}\dfrac{1}{6}\left( \dfrac{1}{\left( 3n-1 \right)}-\dfrac{1}{\left( 3n+5 \right)} \right)$
After that we will open the bracket and will multiply $\left( 3n-1 \right)$to the terms that are inside the bracket as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{6}\left( \dfrac{1}{\left( 3n-1 \right)\left( 3n+2 \right)}-\dfrac{1}{\left( 3n+2 \right)\left( 3n+5 \right)} \right)$
Now, again we will separate the in bracketed terms that are in multiplication form as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{3}\left[ \left( \dfrac{1}{\left( 3n-1 \right)}-\dfrac{1}{\left( 3n+2 \right)} \right)-\left( \dfrac{1}{\left( 3n+2 \right)}-\dfrac{1}{\left( 3n+5 \right)} \right) \right]$
Since, we will get $3$when we will use subtraction in both the bracketed terms. So we will divide them by $3$ as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{6}\left[ \dfrac{1}{3}\left( \dfrac{1}{\left( 3n-1 \right)}-\dfrac{1}{\left( 3n+2 \right)} \right)-\dfrac{1}{3}\left( \dfrac{1}{\left( 3n+2 \right)}-\dfrac{1}{\left( 3n+5 \right)} \right) \right]$
Now, we will take out $\dfrac{1}{3}$ as a common factor and will multiply it by $\dfrac{1}{6}$ as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{6}\times \dfrac{1}{3}\left[ \left( \dfrac{1}{\left( 3n-1 \right)}-\dfrac{1}{\left( 3n+2 \right)} \right)-\left( \dfrac{1}{\left( 3n+2 \right)}-\dfrac{1}{\left( 3n+5 \right)} \right) \right]$
$\Rightarrow {{n}^{th}}term=\dfrac{1}{18}\left[ \left( \dfrac{1}{\left( 3n-1 \right)}-\dfrac{1}{\left( 3n+2 \right)} \right)-\left( \dfrac{1}{\left( 3n+2 \right)}-\dfrac{1}{\left( 3n+5 \right)} \right) \right]$
Here, we will solve the bracketed terms by opening the bracket as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3n-1 \right)}-\dfrac{1}{\left( 3n+2 \right)}-\dfrac{1}{\left( 3n+2 \right)}+\dfrac{1}{\left( 3n+5 \right)} \right]$
Now, the above equation will be as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3n-1 \right)}-\dfrac{2}{\left( 3n+2 \right)}+\dfrac{1}{\left( 3n+5 \right)} \right]$
Now, here we will try to find out the value of ever term as:
For first term: $n=1$
$\Rightarrow {{1}^{st}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3\times 1-1 \right)}-\dfrac{2}{\left( 3\times 1+2 \right)}+\dfrac{1}{\left( 3\times 1+5 \right)} \right]$
$\Rightarrow {{1}^{st}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3-1 \right)}-\dfrac{2}{\left( 3+2 \right)}+\dfrac{1}{\left( 3+5 \right)} \right]$
$\Rightarrow {{1}^{st}}term=\dfrac{1}{18}\left[ \dfrac{1}{2}-\dfrac{2}{5}+\dfrac{1}{8} \right]$
For second term: $n=2$
$\Rightarrow {{2}^{nd}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3\times 2-1 \right)}-\dfrac{2}{\left( 3\times 2+2 \right)}+\dfrac{1}{\left( 3\times 2+5 \right)} \right]$
After solving above equation we will get:
$\Rightarrow {{2}^{nd}}term=\dfrac{1}{18}\left[ \dfrac{1}{5}-\dfrac{2}{8}+\dfrac{1}{11} \right]$
For third term: $n=3$
$\Rightarrow {{3}^{rd}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3\times 3-1 \right)}-\dfrac{2}{\left( 3\times 3+2 \right)}+\dfrac{1}{\left( 3\times 3+5 \right)} \right]$
We will have the value of third term after solving the above equation as:
$\Rightarrow {{3}^{rd}}term=\dfrac{1}{18}\left[ \dfrac{1}{8}-\dfrac{2}{11}+\dfrac{1}{14} \right]$
… … … … …
For ${{\left( n-1 \right)}^{th}}term$ : $n=n-1$
$\Rightarrow {{\left( n-1 \right)}^{th}}term=\dfrac{1}{18}\left[ \dfrac{1}{3\left( n-1 \right)-1}-\dfrac{2}{3\left( n-1 \right)+2}+\dfrac{1}{3\left( n-1 \right)+5} \right]$
Now, the ${{\left( n-1 \right)}^{th}}term$ will be as:
$\Rightarrow {{\left( n-1 \right)}^{th}}term=\dfrac{1}{18}\left[ \dfrac{1}{3n-4}-\dfrac{2}{3n-1}+\dfrac{1}{3n+2} \right]$
This process will go up to ${{n}^{th}}term$.
Since, we got all the $n\text{ }terms$ of the given question. Now, we will apply summation sign to get the sum of the given question as:
\[\Rightarrow {{S}_{n}}=\dfrac{1}{18}\left[ \sum\limits_{1}^{n}{\dfrac{1}{\left( 3n-1 \right)}}-\sum\limits_{1}^{n}{\dfrac{2}{\left( 3n+2 \right)}}+\sum\limits_{1}^{n}{\dfrac{1}{\left( 3n+5 \right)}} \right]\]
Now, we will write it as:
$\begin{align}
& \Rightarrow {{S}_{n}}=\dfrac{1}{18}\left[ \dfrac{1}{2}-\dfrac{2}{5}+\dfrac{1}{8} \right]+\dfrac{1}{18}\left[ \dfrac{1}{5}-\dfrac{2}{8}+\dfrac{1}{11} \right]+\dfrac{1}{18}\left[ \dfrac{1}{8}-\dfrac{2}{11}+\dfrac{1}{14} \right]+... \\
& +\dfrac{1}{18}\left[ \dfrac{1}{3n-4}-\dfrac{2}{3n-1}+\dfrac{1}{3n+2} \right]+\dfrac{1}{18}\left[ \dfrac{1}{\left( 3n-1 \right)}-\dfrac{2}{\left( 3n+2 \right)}+\dfrac{1}{\left( 3n+5 \right)} \right] \\
\end{align}$
$\Rightarrow {{S}_{n}}=\dfrac{1}{18}\left[ \dfrac{1}{2}-\dfrac{2}{5}+\dfrac{1}{8}+\dfrac{1}{5}-\dfrac{2}{8}+\dfrac{1}{11}+\dfrac{1}{8}-\dfrac{2}{11}+\dfrac{1}{14}+...+\dfrac{1}{3n-4}-\dfrac{2}{3n-1}+\dfrac{1}{3n+2}+\dfrac{1}{\left( 3n-1 \right)}-\dfrac{2}{\left( 3n+2 \right)}+\dfrac{1}{\left( 3n+5 \right)} \right]$
As we can see that some terms will be canceled. So, we will get the above equation as:
$\Rightarrow {{S}_{n}}=\dfrac{1}{18}\left[ \dfrac{1}{2}-\dfrac{1}{5}-\dfrac{1}{\left( 3n+2 \right)}+\dfrac{1}{\left( 3n+5 \right)} \right]$
Now, we will solve the above equation as:
$\Rightarrow {{S}_{n}}=\dfrac{1}{18}\left[ \dfrac{5-2}{10}-\left( \dfrac{\left( 3n+5 \right)-\left( 3n+2 \right)}{\left( 3n+2 \right)\left( 3n+5 \right)} \right) \right]$
$\Rightarrow {{S}_{n}}=\dfrac{1}{18}\left[ \dfrac{3}{10}-\dfrac{3}{\left( 3n+2 \right)\left( 3n+5 \right)} \right]$
Here, we will take $3$ as common:
$\Rightarrow {{S}_{n}}=\dfrac{3}{18}\left[ \dfrac{1}{10}-\dfrac{1}{\left( 3n+2 \right)\left( 3n+5 \right)} \right]$
Since, we got a sum of the n terms of the given question but we can simplify it further. So, we will use subtraction to solve it as:
$\Rightarrow {{S}_{n}}=\dfrac{1}{6}\left[ \dfrac{\left( 3n+2 \right)\left( 3n+5 \right)-10}{10\left( 3n+2 \right)\left( 3n+5 \right)} \right]$
Now, we will expand the above equation by opening bracket as:
$\Rightarrow {{S}_{n}}=\dfrac{1}{6}\left[ \dfrac{9{{n}^{2}}+6n+15n+10-10}{10\left( 9{{n}^{2}}+6n+15n+10 \right)} \right]$
Now, we will do the necessary calculation as:
$\Rightarrow {{S}_{n}}=\dfrac{1}{6}\left[ \dfrac{9{{n}^{2}}+21n}{\left( 90{{n}^{2}}+210n+100 \right)} \right]$
$\Rightarrow {{S}_{n}}=\dfrac{1}{6}\left[ \dfrac{3\left( 3{{n}^{2}}+7n \right)}{\left( 90{{n}^{2}}+210n+100 \right)} \right]$
$\Rightarrow {{S}_{n}}=\dfrac{3}{6}\left[ \dfrac{n\left( 3n+7 \right)}{\left( 90{{n}^{2}}+210n+100 \right)} \right]$
$\Rightarrow {{S}_{n}}=\dfrac{1}{2}\left[ \dfrac{n\left( 3n+7 \right)}{\left( 90{{n}^{2}}+210n+100 \right)} \right]$
Hence, this is a simplified solution of the sum of n terms of the given equation.
Note: Here, we will use alternative method to check the sum of the given question as:
Since, we will have to find the sum of the given question for infinite terms that is:
$\Rightarrow \dfrac{1}{2.5.8}+\dfrac{1}{5.8.11}+\dfrac{1}{8.11.14}+...$
Here, we will consider the sum of some terms as:
$\Rightarrow \dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...\text{ = }{{S}_{\infty }}$ … $\left( i \right)$
Now, we can change the place of first term and can place them other side of equal sign as:
$\Rightarrow \dfrac{1}{5.8}+\dfrac{1}{8.11}+...\text{ = }{{S}_{\infty }}-\dfrac{1}{2.5}$ … $\left( ii \right)$
Since, we have two equations; we need to subtract equation $\left( i \right)$ from equation $\left( ii \right)$ so that we can solve the question easily as:
\[\begin{align}
& \underline{\begin{align}
& \Rightarrow \dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...\text{ = }{{S}_{\infty }} \\
& \Rightarrow \dfrac{1}{5.8}+\dfrac{1}{8.11}+...\text{ = }{{S}_{\infty }}-\dfrac{1}{2.5} \\
\end{align}} \\
& \Rightarrow \dfrac{6}{2.5.8}+\dfrac{6}{5.8.11}+\dfrac{6}{8.11.14}...\text{ =}\dfrac{1}{2.5} \\
\end{align}\]
Since, $6$ is a common factor in all the terms of the above equation. So, we can take $6$common as:
\[\Rightarrow 6\left( \dfrac{1}{2.5.8}+\dfrac{1}{5.8.11}+\dfrac{1}{8.11.14}+... \right)\text{ =}\dfrac{1}{2.5}\]
As we have $6$ , a common factor in the above equation. So we can divide by $6$ in the above equation as:
\[\Rightarrow \dfrac{6}{6}\left( \dfrac{1}{2.5.8}+\dfrac{1}{5.8.11}+\dfrac{1}{8.11.14}+... \right)\text{ =}\dfrac{1}{2.5}\times \dfrac{1}{6}\]
Here, $6$ will cancel out $6$ and after that we will have the multiplication of $2$ , $5$ and $6$as
\[\Rightarrow \left( \dfrac{1}{2.5.8}+\dfrac{1}{5.8.11}+\dfrac{1}{8.11.14}+... \right)\text{ =}\dfrac{1}{60}\]
Hence, we have $\dfrac{1}{60}$ as the sum of infinite terms of a given question.
Since, from the solution we have ${{n}^{th}}term$ of the given question as:
$\Rightarrow {{n}^{th}}term=\dfrac{1}{18}\left[ \dfrac{1}{\left( 3n-1 \right)}-\dfrac{2}{\left( 3n+2 \right)}+\dfrac{1}{\left( 3n+5 \right)} \right]$
And the sum of the solution is:
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{18}\left[ \dfrac{3}{10}-\dfrac{3}{\left( 3n+2 \right)\left( 3n+5 \right)} \right]$
Since, we will replace n by infinite. So, the second term of the bracket approximately will be equal to zero. Hence we will have:
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{18}\left[ \dfrac{3}{10}-0 \right]$
Now, we will solve the above equation as:
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{18}\times \dfrac{3}{10}$
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{6}\times \dfrac{1}{10}$
$\Rightarrow {{S}_{\infty }}=\dfrac{1}{60}$
Here, we also get the value of the sum of infinite terms of a given question as $\dfrac{1}{60}$ .
Hence, the solution is correct.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

