
In the given figure, BO, CO are the angle bisectors of external angles of $$\triangle ABC$$. Then $$\angle BOC$$______.
A. $$90^{\circ }-\dfrac{1}{2} \angle A$$
B. $$90^{\circ }+\dfrac{1}{2} \angle A$$
C. $$180^{\circ }-\dfrac{1}{2} \angle A$$
D. $$180^{\circ }+\dfrac{1}{2} \angle A$$
Answer
575.1k+ views
Hint: In this question it is given that in the given figure, BO, CO are the angle bisectors of external angles of $$\triangle ABC$$. Then we have to find $$\angle BOC$$. So to find the solution we need to know the following two properties
First property: the summation of all the angles of a triangle is $$180^{\circ }$$.
Second property: If two angles are a linear pair (angle on a straight line) then the angles are supplementary, i,e sum of the angles is $$180^{\circ }$$.
So by using the above information we have to find the solution.
Complete step-by-step answer:
The external angles of $$\triangle ABC$$ are $$\angle PBC$$ and $$\angle QCB$$.
Here It is given that BO, CO are the angle bisectors of external angles of $$\triangle ABC$$, i.e, BO and CO is the bisector of $$\angle PBC$$ and $$\angle QCB$$.
Since the created angles by BO is $$\angle 1$$ and $$\angle 2$$
$$\therefore \angle 1=\angle 2$$
Let, $$ \angle 1=\angle 2=x$$
Similarly CO is the bisector of $$\angle QCB$$
Therefore we can write from the diagram,
$$ \angle 3=\angle 4$$
Let, $$ \angle 3=\angle 4=y$$
Since $$\angle ABC$$ and $$\angle PBC$$ are the linear pairs,
Therefore by the second property we can write,
$$\angle ABC+\angle PBC=180^{\circ }$$
$$\Rightarrow \angle ABC+\angle 1+\angle 2=180^{\circ }$$
$$\Rightarrow \angle ABC+x+x=180^{\circ }$$
$$\Rightarrow \angle ABC+2x=180^{\circ }$$
$$\Rightarrow \angle ABC=180^{\circ }-2x$$..........(1)
Again since $$\angle ACB$$ and $$\angle QCB$$ are the linear pairs, so similarly by the above process we can write,
$$\angle ACB=180^{\circ }-2y$$.........(2)
Now by using the triangular formulas(first property) we can write for $$\triangle ABC$$
$$\angle A+\angle ABC+\angle ACB=180^{\circ }$$ [since,$$\angle BAC =\angle A$$]
$$\Rightarrow \angle A+\left( 180^{\circ }-2x\right) +\left( 180^{\circ }-2y\right) =180^{\circ }$$[by (1) and (2)]
$$\Rightarrow \angle A+180^{\circ }+180^{\circ }-2x-2y=180^{\circ }$$
$$\Rightarrow \angle A+360^{\circ }=180^{\circ }+2x+2y$$
$$\Rightarrow 180^{\circ }+2x+2y=\angle A+360^{\circ }$$
$$\Rightarrow 2x+2y=\angle A+360^{\circ }-180^{\circ }$$
$$\Rightarrow 2(x+y)=\angle A+180^{\circ }$$
$$\Rightarrow x+y=\dfrac{\angle A+180^{\circ }}{2}$$
$$\Rightarrow x+y=\dfrac{180^{\circ }}{2} +\dfrac{1}{2} \angle A$$
$$\Rightarrow x+y=90^{\circ }+\dfrac{1}{2} \angle A$$.........(3)
Now again using the triangular formulas(first property) we can write for $$\triangle BOC$$
$$\angle BOC+\angle 4+\angle 1=180^{\circ }$$
$$\Rightarrow \angle BOC+y+x=180^{\circ }$$
$$\Rightarrow \angle BOC=180^{\circ }-x-y$$
$$\Rightarrow \angle BOC=180^{\circ }-\left( x+y\right) $$
Now by putting the value of (x+y) from equation (3), we can write the above equation as,
$$ \angle BOC=180^{\circ }-\left( 90^{\circ }+\dfrac{1}{2} \angle A\right) $$
$$\Rightarrow \angle BOC=180^{\circ }-90^{\circ }-\dfrac{1}{2} \angle A$$
$$\Rightarrow \angle BOC=90^{\circ }-\dfrac{1}{2} \angle A$$
So, the correct answer is “Option A”.
Note: While solving this type of question you need to know that, if you have given a line which is an angle bisector, then it means that the line bisects that angle, i.e, the line divides the angle in equal two measures.
First property: the summation of all the angles of a triangle is $$180^{\circ }$$.
Second property: If two angles are a linear pair (angle on a straight line) then the angles are supplementary, i,e sum of the angles is $$180^{\circ }$$.
So by using the above information we have to find the solution.
Complete step-by-step answer:
The external angles of $$\triangle ABC$$ are $$\angle PBC$$ and $$\angle QCB$$.
Here It is given that BO, CO are the angle bisectors of external angles of $$\triangle ABC$$, i.e, BO and CO is the bisector of $$\angle PBC$$ and $$\angle QCB$$.
Since the created angles by BO is $$\angle 1$$ and $$\angle 2$$
$$\therefore \angle 1=\angle 2$$
Let, $$ \angle 1=\angle 2=x$$
Similarly CO is the bisector of $$\angle QCB$$
Therefore we can write from the diagram,
$$ \angle 3=\angle 4$$
Let, $$ \angle 3=\angle 4=y$$
Since $$\angle ABC$$ and $$\angle PBC$$ are the linear pairs,
Therefore by the second property we can write,
$$\angle ABC+\angle PBC=180^{\circ }$$
$$\Rightarrow \angle ABC+\angle 1+\angle 2=180^{\circ }$$
$$\Rightarrow \angle ABC+x+x=180^{\circ }$$
$$\Rightarrow \angle ABC+2x=180^{\circ }$$
$$\Rightarrow \angle ABC=180^{\circ }-2x$$..........(1)
Again since $$\angle ACB$$ and $$\angle QCB$$ are the linear pairs, so similarly by the above process we can write,
$$\angle ACB=180^{\circ }-2y$$.........(2)
Now by using the triangular formulas(first property) we can write for $$\triangle ABC$$
$$\angle A+\angle ABC+\angle ACB=180^{\circ }$$ [since,$$\angle BAC =\angle A$$]
$$\Rightarrow \angle A+\left( 180^{\circ }-2x\right) +\left( 180^{\circ }-2y\right) =180^{\circ }$$[by (1) and (2)]
$$\Rightarrow \angle A+180^{\circ }+180^{\circ }-2x-2y=180^{\circ }$$
$$\Rightarrow \angle A+360^{\circ }=180^{\circ }+2x+2y$$
$$\Rightarrow 180^{\circ }+2x+2y=\angle A+360^{\circ }$$
$$\Rightarrow 2x+2y=\angle A+360^{\circ }-180^{\circ }$$
$$\Rightarrow 2(x+y)=\angle A+180^{\circ }$$
$$\Rightarrow x+y=\dfrac{\angle A+180^{\circ }}{2}$$
$$\Rightarrow x+y=\dfrac{180^{\circ }}{2} +\dfrac{1}{2} \angle A$$
$$\Rightarrow x+y=90^{\circ }+\dfrac{1}{2} \angle A$$.........(3)
Now again using the triangular formulas(first property) we can write for $$\triangle BOC$$
$$\angle BOC+\angle 4+\angle 1=180^{\circ }$$
$$\Rightarrow \angle BOC+y+x=180^{\circ }$$
$$\Rightarrow \angle BOC=180^{\circ }-x-y$$
$$\Rightarrow \angle BOC=180^{\circ }-\left( x+y\right) $$
Now by putting the value of (x+y) from equation (3), we can write the above equation as,
$$ \angle BOC=180^{\circ }-\left( 90^{\circ }+\dfrac{1}{2} \angle A\right) $$
$$\Rightarrow \angle BOC=180^{\circ }-90^{\circ }-\dfrac{1}{2} \angle A$$
$$\Rightarrow \angle BOC=90^{\circ }-\dfrac{1}{2} \angle A$$
So, the correct answer is “Option A”.
Note: While solving this type of question you need to know that, if you have given a line which is an angle bisector, then it means that the line bisects that angle, i.e, the line divides the angle in equal two measures.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

