
In the given figure , A,B and C are three points on a circle with centre O such that $\angle BOC = {30^ \circ }$ and $\angle AOB = {60^ \circ }$. If D is a point on the circle other than the arc ABC, find $\angle ADC$ ?

Answer
481.5k+ views
Hint:
From the given angles we get the angle subtended by the arc at the centre to be ${90^ \circ }$ and then by using the property that the angle subtended by an arc at the centre is twice the angle subtended by the arc at any other point on the circle we can get the value of $\angle ADC$.
Complete step by step solution:
We are given a circle and A , B and C are the points on the circle
And its given that $\angle BOC = {30^ \circ }$ and $\angle AOB = {60^ \circ }$
From the diagram we can get that
$
\Rightarrow \angle AOC = \angle AOB + \angle BOC \\
\Rightarrow \angle AOC = {60^ \circ } + {30^ \circ } \\
\Rightarrow \angle AOC = {90^ \circ } \\
$
We can see that $\angle AOC$ is the angle subtended at the centre by the arc ABC
Now D is the point on the circle other than the arc ABC
Hence we know that the angle subtended by an arc at the centre is twice the angle subtended by the arc at any other point on the circle
Therefore we get
$
\Rightarrow \angle AOC = 2 \times \angle ADC \\
\Rightarrow {90^ \circ } = 2 \times \angle ADC \\
\Rightarrow \dfrac{{{{90}^ \circ }}}{2} = \angle ADC \\
\Rightarrow {45^ \circ } = \angle ADC \\
$
Hence we get the value of $\angle ADC$ as ${45}^{\circ}$.
Note:
1) Angles in the same segment of a circle are equal.
2) The angle at the centre of a circle is twice the angle at the circumference subtended by the same arc.
3) The angle subtended by a diameter at the circumference is equal to a right angle.
4) The opposite angles of a quadrilateral inscribed in a circle sum to two right angles.
From the given angles we get the angle subtended by the arc at the centre to be ${90^ \circ }$ and then by using the property that the angle subtended by an arc at the centre is twice the angle subtended by the arc at any other point on the circle we can get the value of $\angle ADC$.
Complete step by step solution:
We are given a circle and A , B and C are the points on the circle
And its given that $\angle BOC = {30^ \circ }$ and $\angle AOB = {60^ \circ }$

From the diagram we can get that
$
\Rightarrow \angle AOC = \angle AOB + \angle BOC \\
\Rightarrow \angle AOC = {60^ \circ } + {30^ \circ } \\
\Rightarrow \angle AOC = {90^ \circ } \\
$
We can see that $\angle AOC$ is the angle subtended at the centre by the arc ABC
Now D is the point on the circle other than the arc ABC
Hence we know that the angle subtended by an arc at the centre is twice the angle subtended by the arc at any other point on the circle
Therefore we get
$
\Rightarrow \angle AOC = 2 \times \angle ADC \\
\Rightarrow {90^ \circ } = 2 \times \angle ADC \\
\Rightarrow \dfrac{{{{90}^ \circ }}}{2} = \angle ADC \\
\Rightarrow {45^ \circ } = \angle ADC \\
$
Hence we get the value of $\angle ADC$ as ${45}^{\circ}$.
Note:
1) Angles in the same segment of a circle are equal.
2) The angle at the centre of a circle is twice the angle at the circumference subtended by the same arc.
3) The angle subtended by a diameter at the circumference is equal to a right angle.
4) The opposite angles of a quadrilateral inscribed in a circle sum to two right angles.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is pollution? How many types of pollution? Define it

The largest brackish water lake in India is A Wular class 9 biology CBSE
