
In the formula \[2\cos \dfrac{A}{2} = \pm \sqrt {1 + \sin A} \pm \sqrt {1 - \sin A} \], find within what limits \[\dfrac{A}{2}\] must lie when
(1) The two positive signs are taken.
(2) The two negative signs are taken and
(3) The first sign is negative and the second positive.
Answer
587.1k+ views
Hint: We need to find out the required range for that first we need to solve the given formula, then apply the signs in different cases and then finally we will get the reduced form.
Comparing the formula \[2{\cos ^2}A - 1 = \cos 2A\] we will get the range for each case.
Formula used: \[{(a + b)^2} = {a^2} + 2ab + {b^2}\]
\[{(a - b)^2} = {a^2} - 2ab + {b^2}\]
\[{a^2} - {b^2} = (a + b)(a - b)\]
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
\[2{\cos ^2}A - 1 = \cos 2A\]
Complete step-by-step answer:
It is given that, the formula \[2\cos \dfrac{A}{2} = \pm \sqrt {1 + \sin A} \pm \sqrt {1 - \sin A} \],
We need to find out within what limits \[\dfrac{A}{2}\] must lie when
(1) the two positive signs are taken.
(2) the two negative signs are taken and
(3) the first sign is negative and the second positive.
Given that, \[2\cos \dfrac{A}{2} = \pm \sqrt {1 + \sin A} \pm \sqrt {1 - \sin A} \]
If both signs are taken positive, then
\[ \Rightarrow 2\cos \dfrac{A}{2} = \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
Squaring both sides we have,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = {\left( {\sqrt {1 + \sin A} + \sqrt {1 - \sin A} } \right)^2}\]
By using the formula \[{(a + b)^2} = {a^2} + 2ab + {b^2}\],
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 1 + \sin A + 1 - \sin A + 2\sqrt {1 + \sin A} .\sqrt {1 - \sin A} \]
Simplifying we get,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {\left( {1 + \sin A} \right)\left( {1 - \sin A} \right)} \]
Let us using the formula \[{a^2} - {b^2} = (a + b)(a - b)\],
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {1 - {{\sin }^2}A} \]
Since, we know that $1 - {\sin ^2}x = {\cos ^{2x}}$ by using this we get,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {{{\cos }^2}A} \]
Cancelling common term \[2\] on both sides,
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = 1 + \left| {\cos A} \right|\]
We know that
\[2{\cos ^2}A - 1 = \cos 2A\]
Thus we get,
\[2{\cos ^2}\dfrac{A}{2} = 1 + \left| {\cos A} \right|\]
\[\left| {\cos A} \right| = 2{\cos ^2}\dfrac{A}{2} - 1\]
Then,\[\cos A > 0\] Thus \[cos{\text{ }}A\] is positive if A lie in the region \[ - \dfrac{\pi }{2}{\text{ to }}\dfrac{\pi }{2}\]
Therefore we get, \[\dfrac{A}{2}\] must lie between \[ - \dfrac{\pi }{4}{\text{ to }}\dfrac{\pi }{4}\] \[\]
(2) If both signs are taken negative, then
\[2\cos \dfrac{A}{2} = - \sqrt {1 + \sin A} - \sqrt {1 - \sin A} \]
Squaring both sides we have,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = {\left( { - \sqrt {1 + \sin A} - \sqrt {1 - \sin A} } \right)^2}\]
Taking common ${\left( { - 1} \right)^2}$ out from the root,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = {( - 1)^2}{\left( {\sqrt {1 + \sin A} + \sqrt {1 - \sin A} } \right)^2}\]
By using the formula \[{(a + b)^2} = {a^2} + 2ab + {b^2}\],
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 1 + \sin A + 1 - \sin A + 2\sqrt {1 + \sin A} .\sqrt {1 - \sin A} \]
Simplifying we get,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {\left( {1 + \sin A} \right)\left( {1 - \sin A} \right)} \]
Let us using the formula \[{a^2} - {b^2} = (a + b)(a - b)\],
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {1 - {{\sin }^2}A} \]
Since, we know that $1 - {\sin ^2}x = {\cos ^{2x}}$ by using this we get,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {{{\cos }^2}A} \]
Cancelling common term \[2\] on both sides,
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = 1 + \left| {\cos A} \right|\]
We know that \[2{\cos ^2}A - 1 = \cos 2A\]
Thus we get,
\[2{\cos ^2}\dfrac{A}{2} = 1 + \left| {\cos A} \right|\]
\[\left| {\cos A} \right| = 2{\cos ^2}\dfrac{A}{2} - 1\]
Then, \[\cos A > 0\] Thus \[cos{\text{ }}A\] is positive if A lie in the region \[ - \dfrac{\pi }{2}{\text{ to }}\dfrac{\pi }{2}\]
Therefore we get, \[\dfrac{A}{2}\] must lie between \[ - \dfrac{\pi }{4}{\text{ to }}\dfrac{\pi }{4}\].
(3) The first sign is negative and the second positive.
\[2\cos \dfrac{A}{2} = - \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
Squaring both sides we have,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = {\left( { - \sqrt {1 + \sin A} + \sqrt {1 - \sin A} } \right)^2}\]
By using the formula \[{(a - b)^2} = {a^2} - 2ab + {b^2}\],
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 1 + \sin A + 1 - \sin A - 2\sqrt {1 + \sin A} .\sqrt {1 - \sin A} \]
Simplifying we get,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 - 2\sqrt {\left( {1 + \sin A} \right)\left( {1 - \sin A} \right)} \]
Let us using the formula \[{a^2} - {b^2} = (a + b)(a - b)\],
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 - 2\sqrt {1 - {{\sin }^2}A} \]
Since, we know that $1 - {\sin ^2}x = {\cos ^{2}x}$ by using this we get,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 - 2\sqrt {{{\cos }^2}A} \]
Cancelling common term \[2\] on both sides,
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = 1 - \left| {\cos A} \right|\]
\[ \Rightarrow \left| {\cos A} \right| = 1 - 2{\cos ^2}\dfrac{A}{2}\]
We know that \[2{\cos ^2}A - 1 = \cos 2A\]
If \[\cos A < 0\] then \[\left| {\cos A} \right| = - \cos A\]
Thus,
\[ \Rightarrow - \cos A = 1 - 2{\cos ^2}\dfrac{A}{2}\]
\[ \Rightarrow \cos A = 2{\cos ^2}\dfrac{A}{2} - 1\]
So, \[cos{\text{ }}A\] is negative if A lie in the region \[\dfrac{\pi }{2}{\text{ to }}\dfrac{{3\pi }}{2}\]
Therefore we get, \[\dfrac{A}{2}\] must lie between \[\dfrac{\pi }{4}{\text{ to }}\dfrac{{3\pi }}{4}\].
Note:
In the first quadrant \[\left( {0\,{\text{to }}\dfrac{\pi }{2}} \right)\] all trigonometric functions are positive, in second quadrant \[\left( {\dfrac{\pi }{2}\,{\text{to}}\,\pi } \right)\] only sine function is positive, and in third quadrant \[\left( {\pi \,{\text{to }}\dfrac{{3\pi }}{2}} \right)\] tan function is positive, in fourth quadrant
\[\left( {\dfrac{{3\pi }}{2}{\text{ to }}2\pi } \right)\] cosine functions are positive.
Comparing the formula \[2{\cos ^2}A - 1 = \cos 2A\] we will get the range for each case.
Formula used: \[{(a + b)^2} = {a^2} + 2ab + {b^2}\]
\[{(a - b)^2} = {a^2} - 2ab + {b^2}\]
\[{a^2} - {b^2} = (a + b)(a - b)\]
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
\[2{\cos ^2}A - 1 = \cos 2A\]
Complete step-by-step answer:
It is given that, the formula \[2\cos \dfrac{A}{2} = \pm \sqrt {1 + \sin A} \pm \sqrt {1 - \sin A} \],
We need to find out within what limits \[\dfrac{A}{2}\] must lie when
(1) the two positive signs are taken.
(2) the two negative signs are taken and
(3) the first sign is negative and the second positive.
Given that, \[2\cos \dfrac{A}{2} = \pm \sqrt {1 + \sin A} \pm \sqrt {1 - \sin A} \]
If both signs are taken positive, then
\[ \Rightarrow 2\cos \dfrac{A}{2} = \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
Squaring both sides we have,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = {\left( {\sqrt {1 + \sin A} + \sqrt {1 - \sin A} } \right)^2}\]
By using the formula \[{(a + b)^2} = {a^2} + 2ab + {b^2}\],
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 1 + \sin A + 1 - \sin A + 2\sqrt {1 + \sin A} .\sqrt {1 - \sin A} \]
Simplifying we get,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {\left( {1 + \sin A} \right)\left( {1 - \sin A} \right)} \]
Let us using the formula \[{a^2} - {b^2} = (a + b)(a - b)\],
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {1 - {{\sin }^2}A} \]
Since, we know that $1 - {\sin ^2}x = {\cos ^{2x}}$ by using this we get,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {{{\cos }^2}A} \]
Cancelling common term \[2\] on both sides,
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = 1 + \left| {\cos A} \right|\]
We know that
\[2{\cos ^2}A - 1 = \cos 2A\]
Thus we get,
\[2{\cos ^2}\dfrac{A}{2} = 1 + \left| {\cos A} \right|\]
\[\left| {\cos A} \right| = 2{\cos ^2}\dfrac{A}{2} - 1\]
Then,\[\cos A > 0\] Thus \[cos{\text{ }}A\] is positive if A lie in the region \[ - \dfrac{\pi }{2}{\text{ to }}\dfrac{\pi }{2}\]
Therefore we get, \[\dfrac{A}{2}\] must lie between \[ - \dfrac{\pi }{4}{\text{ to }}\dfrac{\pi }{4}\] \[\]
(2) If both signs are taken negative, then
\[2\cos \dfrac{A}{2} = - \sqrt {1 + \sin A} - \sqrt {1 - \sin A} \]
Squaring both sides we have,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = {\left( { - \sqrt {1 + \sin A} - \sqrt {1 - \sin A} } \right)^2}\]
Taking common ${\left( { - 1} \right)^2}$ out from the root,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = {( - 1)^2}{\left( {\sqrt {1 + \sin A} + \sqrt {1 - \sin A} } \right)^2}\]
By using the formula \[{(a + b)^2} = {a^2} + 2ab + {b^2}\],
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 1 + \sin A + 1 - \sin A + 2\sqrt {1 + \sin A} .\sqrt {1 - \sin A} \]
Simplifying we get,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {\left( {1 + \sin A} \right)\left( {1 - \sin A} \right)} \]
Let us using the formula \[{a^2} - {b^2} = (a + b)(a - b)\],
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {1 - {{\sin }^2}A} \]
Since, we know that $1 - {\sin ^2}x = {\cos ^{2x}}$ by using this we get,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 + 2\sqrt {{{\cos }^2}A} \]
Cancelling common term \[2\] on both sides,
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = 1 + \left| {\cos A} \right|\]
We know that \[2{\cos ^2}A - 1 = \cos 2A\]
Thus we get,
\[2{\cos ^2}\dfrac{A}{2} = 1 + \left| {\cos A} \right|\]
\[\left| {\cos A} \right| = 2{\cos ^2}\dfrac{A}{2} - 1\]
Then, \[\cos A > 0\] Thus \[cos{\text{ }}A\] is positive if A lie in the region \[ - \dfrac{\pi }{2}{\text{ to }}\dfrac{\pi }{2}\]
Therefore we get, \[\dfrac{A}{2}\] must lie between \[ - \dfrac{\pi }{4}{\text{ to }}\dfrac{\pi }{4}\].
(3) The first sign is negative and the second positive.
\[2\cos \dfrac{A}{2} = - \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
Squaring both sides we have,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = {\left( { - \sqrt {1 + \sin A} + \sqrt {1 - \sin A} } \right)^2}\]
By using the formula \[{(a - b)^2} = {a^2} - 2ab + {b^2}\],
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 1 + \sin A + 1 - \sin A - 2\sqrt {1 + \sin A} .\sqrt {1 - \sin A} \]
Simplifying we get,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 - 2\sqrt {\left( {1 + \sin A} \right)\left( {1 - \sin A} \right)} \]
Let us using the formula \[{a^2} - {b^2} = (a + b)(a - b)\],
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 - 2\sqrt {1 - {{\sin }^2}A} \]
Since, we know that $1 - {\sin ^2}x = {\cos ^{2}x}$ by using this we get,
\[ \Rightarrow 4{\cos ^2}\dfrac{A}{2} = 2 - 2\sqrt {{{\cos }^2}A} \]
Cancelling common term \[2\] on both sides,
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = 1 - \left| {\cos A} \right|\]
\[ \Rightarrow \left| {\cos A} \right| = 1 - 2{\cos ^2}\dfrac{A}{2}\]
We know that \[2{\cos ^2}A - 1 = \cos 2A\]
If \[\cos A < 0\] then \[\left| {\cos A} \right| = - \cos A\]
Thus,
\[ \Rightarrow - \cos A = 1 - 2{\cos ^2}\dfrac{A}{2}\]
\[ \Rightarrow \cos A = 2{\cos ^2}\dfrac{A}{2} - 1\]
So, \[cos{\text{ }}A\] is negative if A lie in the region \[\dfrac{\pi }{2}{\text{ to }}\dfrac{{3\pi }}{2}\]
Therefore we get, \[\dfrac{A}{2}\] must lie between \[\dfrac{\pi }{4}{\text{ to }}\dfrac{{3\pi }}{4}\].
Note:
In the first quadrant \[\left( {0\,{\text{to }}\dfrac{\pi }{2}} \right)\] all trigonometric functions are positive, in second quadrant \[\left( {\dfrac{\pi }{2}\,{\text{to}}\,\pi } \right)\] only sine function is positive, and in third quadrant \[\left( {\pi \,{\text{to }}\dfrac{{3\pi }}{2}} \right)\] tan function is positive, in fourth quadrant
\[\left( {\dfrac{{3\pi }}{2}{\text{ to }}2\pi } \right)\] cosine functions are positive.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

