
In the figure, \[\angle PQR = \angle PRQ\] , then prove that $\angle PQS = \angle PRT$.
Answer
602.7k+ views
Hint: In this question, we use the concept of properties of triangle. We use the property that an exterior angle of a triangle is equal to the sum of the opposite interior angles.
Complete Step-by-Step solution:
Given that \[\angle PQR = \angle PRQ\]
We have to prove that $\angle PQS = \angle PRT$
Now, we can see \[\angle PQS\] and $\angle PRT$ are exterior angles. So, we use the basic property of a triangle that is that the exterior angle of a triangle is equal to the sum of the opposite interior angles.
We can see $\angle PRT$ is exterior angle and \[\angle PQR,\angle QPR\] are opposite interior angles.
So, \[\angle PQR + \angle QPR = \angle PRT..............\left( 1 \right)\]
Now, we can see \[\angle PQS\] is exterior angle and \[\angle PRQ,\angle QPR\] are opposite interior angles.
So, \[\angle PRQ + \angle QPR = \angle PQS..............\left( 2 \right)\]
From (1) and (2) equation eliminate \[\angle QPR\]
$ \Rightarrow \angle PRT - \angle PQR = \angle PQS - \angle PRQ.............\left( 3 \right)$
Now, given in question \[\angle PQR = \angle PRQ\]
From (3) equation,
\[ \Rightarrow \angle PRT = \angle PQS\]
Hence proved, $\angle PQS = \angle PRT$.
Note: We can solve the above question by two different ways. First way we already mention in above and in second way, we have to use the property of linear pairs. We know pairs of adjacent angles whose measures add up to form a straight angle is known as a linear pair.
\[ \Rightarrow \angle PQS + \angle PQR = {180^0}\] (Linear pair)………….. (1)
\[ \Rightarrow \angle PRT + \angle PRQ = {180^0}\] (Linear pair)………….. (2)
After solving both equations we will get $\angle PQS = \angle PRT$
Complete Step-by-Step solution:
Given that \[\angle PQR = \angle PRQ\]
We have to prove that $\angle PQS = \angle PRT$
Now, we can see \[\angle PQS\] and $\angle PRT$ are exterior angles. So, we use the basic property of a triangle that is that the exterior angle of a triangle is equal to the sum of the opposite interior angles.
We can see $\angle PRT$ is exterior angle and \[\angle PQR,\angle QPR\] are opposite interior angles.
So, \[\angle PQR + \angle QPR = \angle PRT..............\left( 1 \right)\]
Now, we can see \[\angle PQS\] is exterior angle and \[\angle PRQ,\angle QPR\] are opposite interior angles.
So, \[\angle PRQ + \angle QPR = \angle PQS..............\left( 2 \right)\]
From (1) and (2) equation eliminate \[\angle QPR\]
$ \Rightarrow \angle PRT - \angle PQR = \angle PQS - \angle PRQ.............\left( 3 \right)$
Now, given in question \[\angle PQR = \angle PRQ\]
From (3) equation,
\[ \Rightarrow \angle PRT = \angle PQS\]
Hence proved, $\angle PQS = \angle PRT$.
Note: We can solve the above question by two different ways. First way we already mention in above and in second way, we have to use the property of linear pairs. We know pairs of adjacent angles whose measures add up to form a straight angle is known as a linear pair.
\[ \Rightarrow \angle PQS + \angle PQR = {180^0}\] (Linear pair)………….. (1)
\[ \Rightarrow \angle PRT + \angle PRQ = {180^0}\] (Linear pair)………….. (2)
After solving both equations we will get $\angle PQS = \angle PRT$
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

