
In the expansion of \[{{\left( 1+x \right)}^{n}}\], what is the sum of even binomial coefficients?
(a)\[{{2}^{n}}\]
(b)\[{{2}^{n-1}}\]
(c)\[{{2}^{n+1}}\]
(d)None of these
Answer
612.9k+ views
Hint: Expand \[{{\left( 1+x \right)}^{n}}\] and mark it as equation (1). Now, put x = -x in (1) and simplify it. Add both the equations and put, x = 1, thus we will get the sum of even or even binomial coefficients.
Complete step-by-step answer:
We have been given the expression \[{{\left( 1+x \right)}^{n}}\]. The binomial expansion of \[{{\left( 1+x \right)}^{n}}\] is equal to, \[{}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+......+{}^{n}{{C}_{r}}{{x}^{r}}\].
\[{{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!}{{x}^{3}}+......+\dfrac{n\left( n-1 \right)\left( n-2 \right)...\left( n-r+1 \right)}{r!}{{x}^{r}}+.....\]
We have been asked to find the sum of even binomial coefficient,
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+....+{}^{n}{{C}_{r}}{{x}^{r}}-(1)\]
Thus the even values are \[{{C}_{0}},{{C}_{2}},{{C}_{4}}....\] etc.
i.e. \[{{C}_{0}}+{{C}_{2}}+{{C}_{4}}+....\] is the sum of the even coefficients.
Thus, put x = -x in equation (1).
\[\begin{align}
& {{\left( 1+\left( -x \right) \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}\left( -x \right)+{}^{n}{{C}_{2}}{{\left( -x \right)}^{2}}+.....+{}^{n}{{C}_{r}}{{\left( -x \right)}^{r}} \\
& {{\left( 1-x \right)}^{n}}={}^{n}{{C}_{0}}-{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+......+\left( -1 \right){}^{n}{{C}_{r}}{{x}^{r}}-(2) \\
\end{align}\]
Now let us add equation (1) and (2).
\[{{\left( 1+x \right)}^{n}}+{{\left( 1-x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x-{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{2}}{{x}^{2}}+.....+{}^{n}{{C}_{r}}{{x}^{r}}-{}^{n}{{C}_{r}}{{x}^{r}}\]
Thus the above expression, after cancelling like terms becomes,
\[{{\left( 1+x \right)}^{n}}+{{\left( 1-x \right)}^{n}}=2{}^{n}{{C}_{0}}+2{}^{n}{{C}_{0}}{{x}^{2}}+2{}^{n}{{C}_{4}}{{x}^{4}}+.....\]
\[{{\left( 1+x \right)}^{n}}+{{\left( 1-x \right)}^{n}}=2\left[ {}^{n}{{C}_{0}}+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{4}}{{x}^{4}}+..... \right]\]
Now let us put, x = 1.
\[\therefore {{\left( 1+x \right)}^{n}}+{{\left( 1-x \right)}^{n}}=2\left[ {}^{n}{{C}_{0}}+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{4}}{{x}^{4}}+..... \right]\]
\[\begin{align}
& {{\left( 1+1 \right)}^{n}}+{{\left( 1-1 \right)}^{n}}=2\left[ {}^{n}{{C}_{0}}+{}^{n}{{C}_{2}}{{\left( 1 \right)}^{2}}+{}^{n}{{C}_{4}}\times {{\left( 1 \right)}^{4}}+..... \right] \\
& \therefore {{2}^{n}}+0=2\left[ {}^{n}{{C}_{0}}+{}^{n}{{C}_{2}}+{}^{n}{{C}_{4}}+..... \right] \\
\end{align}\]
\[{{2}^{n}}=2\left[ {{C}_{0}}+{{C}_{2}}+{{C}_{4}}+.... \right]\left\{ \because \dfrac{{{x}^{a}}}{{{x}^{b}}}={{x}^{a-b}} \right.\]
\[\dfrac{{{2}^{n}}}{2}={{C}_{0}}+{{C}_{2}}+{{C}_{4}}+.....=\dfrac{{{2}^{n}}}{2!}\]
\[\therefore \] The sum of even binomial coefficients = \[{{2}^{n-1}}\].
Thus we got the required answer.
\[\therefore \] Option (b) is the correct answer.
Note: This one is a very simple illustration of how we put some value of x and get the solution of the problem. It is very important how judiciously we exploit this property of the binomial expansion.
Complete step-by-step answer:
We have been given the expression \[{{\left( 1+x \right)}^{n}}\]. The binomial expansion of \[{{\left( 1+x \right)}^{n}}\] is equal to, \[{}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+......+{}^{n}{{C}_{r}}{{x}^{r}}\].
\[{{\left( 1+x \right)}^{n}}=1+nx+\dfrac{n\left( n-1 \right)}{2!}{{x}^{2}}+\dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!}{{x}^{3}}+......+\dfrac{n\left( n-1 \right)\left( n-2 \right)...\left( n-r+1 \right)}{r!}{{x}^{r}}+.....\]
We have been asked to find the sum of even binomial coefficient,
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+....+{}^{n}{{C}_{r}}{{x}^{r}}-(1)\]
Thus the even values are \[{{C}_{0}},{{C}_{2}},{{C}_{4}}....\] etc.
i.e. \[{{C}_{0}}+{{C}_{2}}+{{C}_{4}}+....\] is the sum of the even coefficients.
Thus, put x = -x in equation (1).
\[\begin{align}
& {{\left( 1+\left( -x \right) \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}\left( -x \right)+{}^{n}{{C}_{2}}{{\left( -x \right)}^{2}}+.....+{}^{n}{{C}_{r}}{{\left( -x \right)}^{r}} \\
& {{\left( 1-x \right)}^{n}}={}^{n}{{C}_{0}}-{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+......+\left( -1 \right){}^{n}{{C}_{r}}{{x}^{r}}-(2) \\
\end{align}\]
Now let us add equation (1) and (2).
\[{{\left( 1+x \right)}^{n}}+{{\left( 1-x \right)}^{n}}={}^{n}{{C}_{0}}+{}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}x-{}^{n}{{C}_{1}}x+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{2}}{{x}^{2}}+.....+{}^{n}{{C}_{r}}{{x}^{r}}-{}^{n}{{C}_{r}}{{x}^{r}}\]
Thus the above expression, after cancelling like terms becomes,
\[{{\left( 1+x \right)}^{n}}+{{\left( 1-x \right)}^{n}}=2{}^{n}{{C}_{0}}+2{}^{n}{{C}_{0}}{{x}^{2}}+2{}^{n}{{C}_{4}}{{x}^{4}}+.....\]
\[{{\left( 1+x \right)}^{n}}+{{\left( 1-x \right)}^{n}}=2\left[ {}^{n}{{C}_{0}}+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{4}}{{x}^{4}}+..... \right]\]
Now let us put, x = 1.
\[\therefore {{\left( 1+x \right)}^{n}}+{{\left( 1-x \right)}^{n}}=2\left[ {}^{n}{{C}_{0}}+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{4}}{{x}^{4}}+..... \right]\]
\[\begin{align}
& {{\left( 1+1 \right)}^{n}}+{{\left( 1-1 \right)}^{n}}=2\left[ {}^{n}{{C}_{0}}+{}^{n}{{C}_{2}}{{\left( 1 \right)}^{2}}+{}^{n}{{C}_{4}}\times {{\left( 1 \right)}^{4}}+..... \right] \\
& \therefore {{2}^{n}}+0=2\left[ {}^{n}{{C}_{0}}+{}^{n}{{C}_{2}}+{}^{n}{{C}_{4}}+..... \right] \\
\end{align}\]
\[{{2}^{n}}=2\left[ {{C}_{0}}+{{C}_{2}}+{{C}_{4}}+.... \right]\left\{ \because \dfrac{{{x}^{a}}}{{{x}^{b}}}={{x}^{a-b}} \right.\]
\[\dfrac{{{2}^{n}}}{2}={{C}_{0}}+{{C}_{2}}+{{C}_{4}}+.....=\dfrac{{{2}^{n}}}{2!}\]
\[\therefore \] The sum of even binomial coefficients = \[{{2}^{n-1}}\].
Thus we got the required answer.
\[\therefore \] Option (b) is the correct answer.
Note: This one is a very simple illustration of how we put some value of x and get the solution of the problem. It is very important how judiciously we exploit this property of the binomial expansion.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

