
In the equation ${{4}^{x+2}}={{2}^{x+3}}+48$, find the value of $x$ .
Answer
578.4k+ views
Hint: To find the value of $x$ in the equation ${{4}^{x+2}}={{2}^{x+3}}+48$ , we have to write the equation as ${{\left( {{2}^{2}} \right)}^{x+2}}={{2}^{x+3}}+48$ . Using rules of exponents, we will get ${{2}^{2x+4}}={{2}^{x+3}}+48$ . Using ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ , ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ and simplifying, we will get \[2{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right)=6\] . Let us consider $y={{2}^{x}}$ . Hence, we will get a polynomial, $2{{x}^{2}}-x-6=0$. Find the roots of this polynomial and so we get $y=2,\dfrac{-3}{2}$ . Substitute the value of y in this and consider \[{{2}^{x}}={{2}^{1}}\] . From this, the value of x can be easily found.
Complete step-by-step solution:
We have to find the value of $x$ in the equation ${{4}^{x+2}}={{2}^{x+3}}+48$ . We will use the rules of exponents here.
We know that 4 can be written as ${{2}^{2}}$ . Hence, the given equation becomes
${{\left( {{2}^{2}} \right)}^{x+2}}={{2}^{x+3}}+48$
We know that ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ .So, the above equation can be written as
${{2}^{2\left( x+2 \right)}}={{2}^{x+3}}+48$
Let us multiply the exponents in the first term. We will get
${{2}^{2x+4}}={{2}^{x+3}}+48$
We know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ . Let’s apply this in LHS and RHS. We will get
\[{{2}^{4}}\times {{2}^{2x}}=\left( {{2}^{3}}\times {{2}^{x}} \right)+48\]
We know that ${{2}^{4}}=2\times 2\times 2\times 2=16$ and ${{2}^{3}}=2\times 2\times 2=8$ . Hence, the above equation becomes
\[16\times {{2}^{2x}}=\left( 8\times {{2}^{x}} \right)+48\]
Let us rearrange the terms. We will get
\[\left( 16\times {{2}^{2x}} \right)-\left( 8\times {{2}^{x}} \right)=48\]
We know that ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ . Hence, we can write the previous equation as
\[16{{\left( {{2}^{x}} \right)}^{2}}-8\left( {{2}^{x}} \right)=48\]
Let us take 8 common from LHS. We will get
\[8\left[ 2{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right) \right]=48\]
Now, we can take 8 to the RHS.
\[\begin{align}
& \Rightarrow 2{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right)=\dfrac{48}{8} \\
& \Rightarrow 2{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right)=6 \\
\end{align}\]
Let’s take 6 to RHS.
\[\Rightarrow 2{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right)-6=0\]
Let us consider $y={{2}^{x}}$ . Hence, we will get a polynomial,
$2{{x}^{2}}-x-6=0$
Let’s solve this equation.
We know that $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for a polynomial $a{{x}^{2}}+bx+c=0$ . Hence,
$y=\dfrac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-\left( 4\times 2\times -6 \right)}}{2\times 2}$
Let’s solve this. We will get
$\begin{align}
& y=\dfrac{1\pm \sqrt{1+48}}{4} \\
& \Rightarrow y=\dfrac{1\pm \sqrt{49}}{4} \\
\end{align}$
By taking the root, we will get
$y=\dfrac{1\pm 7}{4}$
This means that
$\begin{align}
& y=\dfrac{1+7}{4},\dfrac{1-7}{4} \\
& \Rightarrow y=\dfrac{8}{4},\dfrac{-6}{4} \\
& \Rightarrow y=2,\dfrac{-3}{2} \\
\end{align}$
Now we can substitute the value of y. We will get
${{2}^{x}}=2,\dfrac{-3}{2}$
Let us consider ${{2}^{x}}=2$
We can write this as
\[{{2}^{x}}={{2}^{1}}\]
We know that when bases are equal, their powers will also be equal. Hence,
\[x=1\]
Hence, the value of $x$ is 1.
Note: You must know the rules of exponents to solve this problem. You may write the formula for ${{\left( {{a}^{m}} \right)}^{n}}\text{as }{{a}^{m+n}}$ , ${{a}^{m}}\times {{a}^{n}}\text{ as }{{a}^{m-n}}$ thus making error in the solution. From the step \[16{{\left( {{2}^{x}} \right)}^{2}}-8\left( {{2}^{x}} \right)=48\] , we can solve this problem in an alternate way.
\[\Rightarrow 16{{\left( {{2}^{x}} \right)}^{2}}-8\left( {{2}^{x}} \right)-48=0\]
We can write \[-8\left( {{2}^{x}} \right)\] as $-32\left( {{2}^{x}} \right)+24\left( {{2}^{x}} \right)$ . We will get
\[\Rightarrow 16{{\left( {{2}^{x}} \right)}^{2}}-32\left( {{2}^{x}} \right)+24\left( {{2}^{x}} \right)-48=0\]
Let us take the common terms outside. We will get
\[16\left( {{2}^{x}} \right)\left( {{2}^{x}}-2 \right)+24\left( {{2}^{x}}-2 \right)=0\]
Now, we can take ${{2}^{x}}-2$ outside. We will get
\[\left( {{2}^{x}}-2 \right)\left( 16\left( {{2}^{x}} \right)+24 \right)=0\]
This mean that, either \[\left( {{2}^{x}}-2 \right)=0\text{ or }\left( 16\left( {{2}^{x}} \right)+24 \right)=0\]
Let us consider \[\left( {{2}^{x}}-2 \right)=0\]
We can rearrange the terms to get
\[{{2}^{x}}=2\]
We know that when bases are equal, their powers will also be equal. Hence,
\[x=1\]
Complete step-by-step solution:
We have to find the value of $x$ in the equation ${{4}^{x+2}}={{2}^{x+3}}+48$ . We will use the rules of exponents here.
We know that 4 can be written as ${{2}^{2}}$ . Hence, the given equation becomes
${{\left( {{2}^{2}} \right)}^{x+2}}={{2}^{x+3}}+48$
We know that ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ .So, the above equation can be written as
${{2}^{2\left( x+2 \right)}}={{2}^{x+3}}+48$
Let us multiply the exponents in the first term. We will get
${{2}^{2x+4}}={{2}^{x+3}}+48$
We know that ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ . Let’s apply this in LHS and RHS. We will get
\[{{2}^{4}}\times {{2}^{2x}}=\left( {{2}^{3}}\times {{2}^{x}} \right)+48\]
We know that ${{2}^{4}}=2\times 2\times 2\times 2=16$ and ${{2}^{3}}=2\times 2\times 2=8$ . Hence, the above equation becomes
\[16\times {{2}^{2x}}=\left( 8\times {{2}^{x}} \right)+48\]
Let us rearrange the terms. We will get
\[\left( 16\times {{2}^{2x}} \right)-\left( 8\times {{2}^{x}} \right)=48\]
We know that ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ . Hence, we can write the previous equation as
\[16{{\left( {{2}^{x}} \right)}^{2}}-8\left( {{2}^{x}} \right)=48\]
Let us take 8 common from LHS. We will get
\[8\left[ 2{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right) \right]=48\]
Now, we can take 8 to the RHS.
\[\begin{align}
& \Rightarrow 2{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right)=\dfrac{48}{8} \\
& \Rightarrow 2{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right)=6 \\
\end{align}\]
Let’s take 6 to RHS.
\[\Rightarrow 2{{\left( {{2}^{x}} \right)}^{2}}-\left( {{2}^{x}} \right)-6=0\]
Let us consider $y={{2}^{x}}$ . Hence, we will get a polynomial,
$2{{x}^{2}}-x-6=0$
Let’s solve this equation.
We know that $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for a polynomial $a{{x}^{2}}+bx+c=0$ . Hence,
$y=\dfrac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-\left( 4\times 2\times -6 \right)}}{2\times 2}$
Let’s solve this. We will get
$\begin{align}
& y=\dfrac{1\pm \sqrt{1+48}}{4} \\
& \Rightarrow y=\dfrac{1\pm \sqrt{49}}{4} \\
\end{align}$
By taking the root, we will get
$y=\dfrac{1\pm 7}{4}$
This means that
$\begin{align}
& y=\dfrac{1+7}{4},\dfrac{1-7}{4} \\
& \Rightarrow y=\dfrac{8}{4},\dfrac{-6}{4} \\
& \Rightarrow y=2,\dfrac{-3}{2} \\
\end{align}$
Now we can substitute the value of y. We will get
${{2}^{x}}=2,\dfrac{-3}{2}$
Let us consider ${{2}^{x}}=2$
We can write this as
\[{{2}^{x}}={{2}^{1}}\]
We know that when bases are equal, their powers will also be equal. Hence,
\[x=1\]
Hence, the value of $x$ is 1.
Note: You must know the rules of exponents to solve this problem. You may write the formula for ${{\left( {{a}^{m}} \right)}^{n}}\text{as }{{a}^{m+n}}$ , ${{a}^{m}}\times {{a}^{n}}\text{ as }{{a}^{m-n}}$ thus making error in the solution. From the step \[16{{\left( {{2}^{x}} \right)}^{2}}-8\left( {{2}^{x}} \right)=48\] , we can solve this problem in an alternate way.
\[\Rightarrow 16{{\left( {{2}^{x}} \right)}^{2}}-8\left( {{2}^{x}} \right)-48=0\]
We can write \[-8\left( {{2}^{x}} \right)\] as $-32\left( {{2}^{x}} \right)+24\left( {{2}^{x}} \right)$ . We will get
\[\Rightarrow 16{{\left( {{2}^{x}} \right)}^{2}}-32\left( {{2}^{x}} \right)+24\left( {{2}^{x}} \right)-48=0\]
Let us take the common terms outside. We will get
\[16\left( {{2}^{x}} \right)\left( {{2}^{x}}-2 \right)+24\left( {{2}^{x}}-2 \right)=0\]
Now, we can take ${{2}^{x}}-2$ outside. We will get
\[\left( {{2}^{x}}-2 \right)\left( 16\left( {{2}^{x}} \right)+24 \right)=0\]
This mean that, either \[\left( {{2}^{x}}-2 \right)=0\text{ or }\left( 16\left( {{2}^{x}} \right)+24 \right)=0\]
Let us consider \[\left( {{2}^{x}}-2 \right)=0\]
We can rearrange the terms to get
\[{{2}^{x}}=2\]
We know that when bases are equal, their powers will also be equal. Hence,
\[x=1\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

