Answer
Verified
483.3k+ views
Hint: We will use the idea of the electric field as a gradient of potential to answer this problem. We are going to solve this problem using the relationship \[E = - \dfrac{{dv}}{{dr}}\].
Complete step by step answer:
We know that in an electrical field the electrical potential between two points A and B is defined as the amount of work performed per unit of positive test charge in moving it against the electrostatic force due to the electrical field from point A to point B.
If $dW$ is the work done in moving a small positive test charge ${q_0}$ from point P to Q, then
$ \Rightarrow (V + dV) - V = \dfrac{{dW}}{{{q_0}}}$.
$ \Rightarrow dV = \dfrac{{dW}}{{{q_0}}}$ ………..(i)
And, if $\overrightarrow E $ is the electric field at point P due to charge +a place at point O, then the test charge experiences a force equal to ,
$ \Rightarrow \overrightarrow F = {q_0}\overrightarrow E $.
Therefore, work done to move the test charge through an infinitely small displacement $PQ = dl$is given by
$dW = \overrightarrow F .\overrightarrow {dl} $
and we have $\overrightarrow F = {q_0}\overrightarrow E $, then
$dW = {q_0}\overrightarrow E .\overrightarrow {dl} = ({q_0}\overrightarrow E ).\overrightarrow {dl} \cos {180^0}$ [ ]
$dW = - {q_0}E.dl$ ……..(ii)
As the distance r decreases in the direction of $\overrightarrow {dl} $, the distance dl is taken as dr.
So now, form equation (ii), we get
$
dW = - {q_0}E.dr \\
\dfrac{{dW}}{{{q_0}}} = - E.dr \\
$
From equation (i), we have $dV = \dfrac{{dW}}{{{q_0}}}$, then
$
dV = - Edr \\
E = - \dfrac{{dV}}{{dr}} \\
$.
Therefore the electric field at a point is equal to the negative gradient of the electric potential at that point.
The negative sign indicates that the direction of E is always in the direction of decreased potential.
Hence, we can say that, In the direction of electric field, the electric potential decreases.
Therefore the correct answer is option (A).
Note: In this type of questions, first we have to identify what relationship of the given terms is required to solve the question. Then we will assume some conditions and prove the statement step by step. While solving the question, we have to remember the significance of the signs. After that we will get the required answer.
Complete step by step answer:
We know that in an electrical field the electrical potential between two points A and B is defined as the amount of work performed per unit of positive test charge in moving it against the electrostatic force due to the electrical field from point A to point B.
If $dW$ is the work done in moving a small positive test charge ${q_0}$ from point P to Q, then
$ \Rightarrow (V + dV) - V = \dfrac{{dW}}{{{q_0}}}$.
$ \Rightarrow dV = \dfrac{{dW}}{{{q_0}}}$ ………..(i)
And, if $\overrightarrow E $ is the electric field at point P due to charge +a place at point O, then the test charge experiences a force equal to ,
$ \Rightarrow \overrightarrow F = {q_0}\overrightarrow E $.
Therefore, work done to move the test charge through an infinitely small displacement $PQ = dl$is given by
$dW = \overrightarrow F .\overrightarrow {dl} $
and we have $\overrightarrow F = {q_0}\overrightarrow E $, then
$dW = {q_0}\overrightarrow E .\overrightarrow {dl} = ({q_0}\overrightarrow E ).\overrightarrow {dl} \cos {180^0}$ [ ]
$dW = - {q_0}E.dl$ ……..(ii)
As the distance r decreases in the direction of $\overrightarrow {dl} $, the distance dl is taken as dr.
So now, form equation (ii), we get
$
dW = - {q_0}E.dr \\
\dfrac{{dW}}{{{q_0}}} = - E.dr \\
$
From equation (i), we have $dV = \dfrac{{dW}}{{{q_0}}}$, then
$
dV = - Edr \\
E = - \dfrac{{dV}}{{dr}} \\
$.
Therefore the electric field at a point is equal to the negative gradient of the electric potential at that point.
The negative sign indicates that the direction of E is always in the direction of decreased potential.
Hence, we can say that, In the direction of electric field, the electric potential decreases.
Therefore the correct answer is option (A).
Note: In this type of questions, first we have to identify what relationship of the given terms is required to solve the question. Then we will assume some conditions and prove the statement step by step. While solving the question, we have to remember the significance of the signs. After that we will get the required answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it