
In the C.G.S system the magnitude of the force is \[100{\rm{ dyne}}\]. In another system where the fundamental physical quantities are kilogram, metre, and minute, and the magnitude of force is:
A. 0.036
B. 0.36
C. 3.6
D. 36
Answer
564.6k+ views
Hint:We will convert the Centimetre-gram-second system unit of force dyne into S.I. unit of force that is Newton. Later we will convert Newton into its fundamental physical quantities (kilogram, metre and second). At last, we will convert the fundamental quantity second into a minute.
Complete step by step answer:
We are given that the magnitude of the force is \[P = 100{\rm{ dyne}}\].
We have to find the magnitude of the force in fundamental physical quantities (kilogram, metre and minute).
We know that the unit dyne in terms of Newton can be expressed as:
\[1{\rm{ dyne}} = {10^{ - 5}}{\rm{ N}}\]…….(1)
We can write the conversion of Newton into its fundamental units (kilogram, metre and second) as below:
\[1{\rm{ N}} = {\rm{kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\]
On substituting \[{\rm{kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\] for Newton in equation (1), we get:
\[1{\rm{ dyne}} = {10^{ - 5}}{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\]
Let us write the expression for the given value of force
\[
P = 100{\rm{ dyne}} \times \left( {\dfrac{{{{10}^{ - 5}}{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}{{{\rm{dyne}}}}} \right)\\
= {10^{ - 3}}{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}} \times {\left( {\dfrac{{{\rm{60 s}}}}{{{\rm{min}}}}} \right)^2}\\
= 3.6{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\min }^2}}}} \right.
} {{{\min }^2}}}
\]
Therefore, the magnitude of the force in terms of fundamental physical quantities are kilogram, metre, and the minute is 3.6, and option (C) is correct.
Note: Alternate method: First, we will convert the C.G.S. system unit of force given in dyne into its fundamental quantities (centimetre, gram and second). Then using the below formula, we can find the magnitude of the force in kilogram, metre and minute:
\[{n_2} = {n_1}{\left[ {\dfrac{{{{\rm{M}}_1}}}{{{{\rm{M}}_2}}}} \right]^a}{\left[ {\dfrac{{{{\rm{L}}_1}}}{{{{\rm{L}}_2}}}} \right]^b}{\left[ {\dfrac{{{{\rm{L}}_1}}}{{{{\rm{L}}_2}}}} \right]^c}\]
Here a=1, b=1 and c= -2.
\[{n_1}\] is the magnitude of the given value of force and \[{n_2}\] is the magnitude of the required force.
And, \[\left[ {{{\rm{L}}_1}} \right] = {\rm{cm}}\], \[\left[ {{{\rm{L}}_2}} \right] = {\rm{m}}\], \[\left[ {{{\rm{M}}_1}} \right] = {\rm{ g}}\], \[\left[ {{{\rm{M}}_2}} \right] = {\rm{kg}}\], \[\left[ {{{\rm{T}}_1}} \right] = {\rm{s}}\].
We also know that the dimensional formula of force is given by \[\left[ {{{\rm{M}}^1}{{\rm{L}}^1}{{\rm{T}}^{ - 2}}} \right]\].
Complete step by step answer:
We are given that the magnitude of the force is \[P = 100{\rm{ dyne}}\].
We have to find the magnitude of the force in fundamental physical quantities (kilogram, metre and minute).
We know that the unit dyne in terms of Newton can be expressed as:
\[1{\rm{ dyne}} = {10^{ - 5}}{\rm{ N}}\]…….(1)
We can write the conversion of Newton into its fundamental units (kilogram, metre and second) as below:
\[1{\rm{ N}} = {\rm{kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\]
On substituting \[{\rm{kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\] for Newton in equation (1), we get:
\[1{\rm{ dyne}} = {10^{ - 5}}{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\]
Let us write the expression for the given value of force
\[
P = 100{\rm{ dyne}} \times \left( {\dfrac{{{{10}^{ - 5}}{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}{{{\rm{dyne}}}}} \right)\\
= {10^{ - 3}}{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}} \times {\left( {\dfrac{{{\rm{60 s}}}}{{{\rm{min}}}}} \right)^2}\\
= 3.6{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\min }^2}}}} \right.
} {{{\min }^2}}}
\]
Therefore, the magnitude of the force in terms of fundamental physical quantities are kilogram, metre, and the minute is 3.6, and option (C) is correct.
Note: Alternate method: First, we will convert the C.G.S. system unit of force given in dyne into its fundamental quantities (centimetre, gram and second). Then using the below formula, we can find the magnitude of the force in kilogram, metre and minute:
\[{n_2} = {n_1}{\left[ {\dfrac{{{{\rm{M}}_1}}}{{{{\rm{M}}_2}}}} \right]^a}{\left[ {\dfrac{{{{\rm{L}}_1}}}{{{{\rm{L}}_2}}}} \right]^b}{\left[ {\dfrac{{{{\rm{L}}_1}}}{{{{\rm{L}}_2}}}} \right]^c}\]
Here a=1, b=1 and c= -2.
\[{n_1}\] is the magnitude of the given value of force and \[{n_2}\] is the magnitude of the required force.
And, \[\left[ {{{\rm{L}}_1}} \right] = {\rm{cm}}\], \[\left[ {{{\rm{L}}_2}} \right] = {\rm{m}}\], \[\left[ {{{\rm{M}}_1}} \right] = {\rm{ g}}\], \[\left[ {{{\rm{M}}_2}} \right] = {\rm{kg}}\], \[\left[ {{{\rm{T}}_1}} \right] = {\rm{s}}\].
We also know that the dimensional formula of force is given by \[\left[ {{{\rm{M}}^1}{{\rm{L}}^1}{{\rm{T}}^{ - 2}}} \right]\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

What are porins class 11 biology CBSE

