
In the C.G.S system the magnitude of the force is \[100{\rm{ dyne}}\]. In another system where the fundamental physical quantities are kilogram, metre, and minute, and the magnitude of force is:
A. 0.036
B. 0.36
C. 3.6
D. 36
Answer
578.7k+ views
Hint:We will convert the Centimetre-gram-second system unit of force dyne into S.I. unit of force that is Newton. Later we will convert Newton into its fundamental physical quantities (kilogram, metre and second). At last, we will convert the fundamental quantity second into a minute.
Complete step by step answer:
We are given that the magnitude of the force is \[P = 100{\rm{ dyne}}\].
We have to find the magnitude of the force in fundamental physical quantities (kilogram, metre and minute).
We know that the unit dyne in terms of Newton can be expressed as:
\[1{\rm{ dyne}} = {10^{ - 5}}{\rm{ N}}\]…….(1)
We can write the conversion of Newton into its fundamental units (kilogram, metre and second) as below:
\[1{\rm{ N}} = {\rm{kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\]
On substituting \[{\rm{kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\] for Newton in equation (1), we get:
\[1{\rm{ dyne}} = {10^{ - 5}}{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\]
Let us write the expression for the given value of force
\[
P = 100{\rm{ dyne}} \times \left( {\dfrac{{{{10}^{ - 5}}{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}{{{\rm{dyne}}}}} \right)\\
= {10^{ - 3}}{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}} \times {\left( {\dfrac{{{\rm{60 s}}}}{{{\rm{min}}}}} \right)^2}\\
= 3.6{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\min }^2}}}} \right.
} {{{\min }^2}}}
\]
Therefore, the magnitude of the force in terms of fundamental physical quantities are kilogram, metre, and the minute is 3.6, and option (C) is correct.
Note: Alternate method: First, we will convert the C.G.S. system unit of force given in dyne into its fundamental quantities (centimetre, gram and second). Then using the below formula, we can find the magnitude of the force in kilogram, metre and minute:
\[{n_2} = {n_1}{\left[ {\dfrac{{{{\rm{M}}_1}}}{{{{\rm{M}}_2}}}} \right]^a}{\left[ {\dfrac{{{{\rm{L}}_1}}}{{{{\rm{L}}_2}}}} \right]^b}{\left[ {\dfrac{{{{\rm{L}}_1}}}{{{{\rm{L}}_2}}}} \right]^c}\]
Here a=1, b=1 and c= -2.
\[{n_1}\] is the magnitude of the given value of force and \[{n_2}\] is the magnitude of the required force.
And, \[\left[ {{{\rm{L}}_1}} \right] = {\rm{cm}}\], \[\left[ {{{\rm{L}}_2}} \right] = {\rm{m}}\], \[\left[ {{{\rm{M}}_1}} \right] = {\rm{ g}}\], \[\left[ {{{\rm{M}}_2}} \right] = {\rm{kg}}\], \[\left[ {{{\rm{T}}_1}} \right] = {\rm{s}}\].
We also know that the dimensional formula of force is given by \[\left[ {{{\rm{M}}^1}{{\rm{L}}^1}{{\rm{T}}^{ - 2}}} \right]\].
Complete step by step answer:
We are given that the magnitude of the force is \[P = 100{\rm{ dyne}}\].
We have to find the magnitude of the force in fundamental physical quantities (kilogram, metre and minute).
We know that the unit dyne in terms of Newton can be expressed as:
\[1{\rm{ dyne}} = {10^{ - 5}}{\rm{ N}}\]…….(1)
We can write the conversion of Newton into its fundamental units (kilogram, metre and second) as below:
\[1{\rm{ N}} = {\rm{kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\]
On substituting \[{\rm{kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\] for Newton in equation (1), we get:
\[1{\rm{ dyne}} = {10^{ - 5}}{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}\]
Let us write the expression for the given value of force
\[
P = 100{\rm{ dyne}} \times \left( {\dfrac{{{{10}^{ - 5}}{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}}}{{{\rm{dyne}}}}} \right)\\
= {10^{ - 3}}{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}} \times {\left( {\dfrac{{{\rm{60 s}}}}{{{\rm{min}}}}} \right)^2}\\
= 3.6{\rm{ kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\min }^2}}}} \right.
} {{{\min }^2}}}
\]
Therefore, the magnitude of the force in terms of fundamental physical quantities are kilogram, metre, and the minute is 3.6, and option (C) is correct.
Note: Alternate method: First, we will convert the C.G.S. system unit of force given in dyne into its fundamental quantities (centimetre, gram and second). Then using the below formula, we can find the magnitude of the force in kilogram, metre and minute:
\[{n_2} = {n_1}{\left[ {\dfrac{{{{\rm{M}}_1}}}{{{{\rm{M}}_2}}}} \right]^a}{\left[ {\dfrac{{{{\rm{L}}_1}}}{{{{\rm{L}}_2}}}} \right]^b}{\left[ {\dfrac{{{{\rm{L}}_1}}}{{{{\rm{L}}_2}}}} \right]^c}\]
Here a=1, b=1 and c= -2.
\[{n_1}\] is the magnitude of the given value of force and \[{n_2}\] is the magnitude of the required force.
And, \[\left[ {{{\rm{L}}_1}} \right] = {\rm{cm}}\], \[\left[ {{{\rm{L}}_2}} \right] = {\rm{m}}\], \[\left[ {{{\rm{M}}_1}} \right] = {\rm{ g}}\], \[\left[ {{{\rm{M}}_2}} \right] = {\rm{kg}}\], \[\left[ {{{\rm{T}}_1}} \right] = {\rm{s}}\].
We also know that the dimensional formula of force is given by \[\left[ {{{\rm{M}}^1}{{\rm{L}}^1}{{\rm{T}}^{ - 2}}} \right]\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

