
In the binomial expansion of $ {\left( {a - b} \right)^n} $ , $ n \geqslant 5 $ , the sum of 5th and 6th terms is zero then a/b equal to
A. $ \dfrac{5}{{n - 4}} $
B. $ \dfrac{6}{{n - 5}} $
C. $ \dfrac{{n - 5}}{6} $
D. $ \dfrac{{n - 4}}{5} $
Answer
555.9k+ views
Hint: Here we have a limit for n that n must be greater than or equal to 5. So first expand $ {\left( {a - b} \right)^n} $ using the below mentioned binomial theorem formula by putting x as a and y as b. From the binomial expansion take out the 5th and 6th terms; add them and equate it to zero. Then find the division of a over b.
Formula used:
Binomial expansion of $ {\left( {x - y} \right)^n} $ is $ \mathop \sum \limits_{r = 0}^n {\left( { - 1} \right)^r}.{}_{}^nC_r^{}{x^{n - r}}{y^r} $ , where ‘r’ must be less than or equal to 1.
Complete step-by-step answer:
We are given that in the binomial expansion of $ {\left( {a - b} \right)^n} $ , $ n \geqslant 5 $ , the sum of 5th and 6th terms is zero.
We have to find the ratio of a:b, $ \dfrac{a}{b} $
First we are expanding $ {\left( {a - b} \right)^n} $ using the binomial expansion of $ {\left( {x - y} \right)^n} $ where x is a and y is b.
Therefore, the binomial expansion of $ {\left( {a - b} \right)^n} $ is
$ \mathop \sum \limits_{r = 0}^n {\left( { - 1} \right)^r}.{}_{}^nC_r^{}{a^{n - r}}{b^r} $
$ \Rightarrow \left[ {{{\left( { - 1} \right)}^0}.{}_{}^nC_0^{}{a^{n - 0}}{b^0}} \right] + \left[ {{{\left( { - 1} \right)}^1}.{}_{}^nC_1^{}{a^{n - 1}}{b^1}} \right] + \left[ {{{\left( { - 1} \right)}^2}.{}_{}^nC_2^{}{a^{n - 2}}{b^2}} \right] + \left[ {{{\left( { - 1} \right)}^3}.{}_{}^nC_3^{}{a^{n - 3}}{b^3}} \right] + \left[ {{{\left( { - 1} \right)}^4}.{}_{}^nC_4^{}{a^{n - 4}}{b^4}} \right] + \left[ {{{\left( { - 1} \right)}^5}.{}_{}^nC_5^{}{a^{n - 5}}{b^5}} \right] + ..... $
$ \Rightarrow {}_{}^nC_0^{}{a^n} - {}_{}^nC_1^{}{a^{n - 1}}b + {}_{}^nC_2^{}{a^{n - 2}}{b^2} - {}_{}^nC_3^{}{a^{n - 3}}{b^3} + {}_{}^nC_4^{}{a^{n - 4}}{b^4} - {}_{}^nC_5^{}{a^{n - 5}}{b^5} + ..... $
As we can see in the above expansion 5th term is $ {}_{}^nC_4^{}{a^{n - 4}}{b^4} $ and 6th term is $ - {}_{}^nC_5^{}{a^{n - 5}}{b^5} $ .
The sum of 5th and 6th terms is zero as given in the question.
$ \Rightarrow {}_{}^nC_4^{}{a^{n - 4}}{b^4} - {}_{}^nC_5^{}{a^{n - 5}}{b^5} = 0 $
$ \Rightarrow {}_{}^nC_4^{}{a^{n - 4}}{b^4} = {}_{}^nC_5^{}{a^{n - 5}}{b^5} $
$ \Rightarrow \dfrac{{{}_{}^nC_4^{}}}{{{}_{}^nC_5^{}}} = \dfrac{{{a^{n - 5}}{b^5}}}{{{a^{n - 4}}{b^4}}} $
$ \Rightarrow \dfrac{{\left( {\dfrac{{n!}}{{4!\left( {n - 4} \right)!}}} \right)}}{{\left( {\dfrac{{n!}}{{5!\left( {n - 5} \right)!}}} \right)}} = \dfrac{b}{a} $
$ \Rightarrow \dfrac{5}{{n - 4}} = \dfrac{b}{a} $
Invert the numerator and denominator
$ \therefore \dfrac{a}{b} = \dfrac{{n - 4}}{5} $
Hence, the correct option is Option D, the value of $ \dfrac{a}{b} $ is $ \dfrac{{n - 4}}{5} $
So, the correct answer is “Option D”.
Note: Instead of expanding the total expression, we can directly find the 5th and 6th terms using a formula. This formula is the general form of the terms of a binomial expansion of $ {\left( {a - b} \right)^n} $ , which is
$ {T_{r + 1}} = {\left( { - 1} \right)^r}.{}_{}^nC_r^{}{a^{n - r}}{b^r} $ , where r can be less than or equal to n
Here we need 5th and 6th terms, so just substitute r=4 and r=5 respectively to get the terms.
When r is equal to 4, $ {T_{4 + 1}} = {T_5} = {\left( { - 1} \right)^4}.{}_{}^nC_4^{}{a^{n - 4}}{b^4} = {}_{}^nC_4^{}{a^{n - 4}}{b^4} $
When r is equal to 5, $ {T_{5 + 1}} = {T_6} = {\left( { - 1} \right)^5}.{}_{}^nC_5^{}{a^{n - 5}}{b^5} = - {}_{}^nC_5^{}{a^{n - 5}}{b^5} $
Formula used:
Binomial expansion of $ {\left( {x - y} \right)^n} $ is $ \mathop \sum \limits_{r = 0}^n {\left( { - 1} \right)^r}.{}_{}^nC_r^{}{x^{n - r}}{y^r} $ , where ‘r’ must be less than or equal to 1.
Complete step-by-step answer:
We are given that in the binomial expansion of $ {\left( {a - b} \right)^n} $ , $ n \geqslant 5 $ , the sum of 5th and 6th terms is zero.
We have to find the ratio of a:b, $ \dfrac{a}{b} $
First we are expanding $ {\left( {a - b} \right)^n} $ using the binomial expansion of $ {\left( {x - y} \right)^n} $ where x is a and y is b.
Therefore, the binomial expansion of $ {\left( {a - b} \right)^n} $ is
$ \mathop \sum \limits_{r = 0}^n {\left( { - 1} \right)^r}.{}_{}^nC_r^{}{a^{n - r}}{b^r} $
$ \Rightarrow \left[ {{{\left( { - 1} \right)}^0}.{}_{}^nC_0^{}{a^{n - 0}}{b^0}} \right] + \left[ {{{\left( { - 1} \right)}^1}.{}_{}^nC_1^{}{a^{n - 1}}{b^1}} \right] + \left[ {{{\left( { - 1} \right)}^2}.{}_{}^nC_2^{}{a^{n - 2}}{b^2}} \right] + \left[ {{{\left( { - 1} \right)}^3}.{}_{}^nC_3^{}{a^{n - 3}}{b^3}} \right] + \left[ {{{\left( { - 1} \right)}^4}.{}_{}^nC_4^{}{a^{n - 4}}{b^4}} \right] + \left[ {{{\left( { - 1} \right)}^5}.{}_{}^nC_5^{}{a^{n - 5}}{b^5}} \right] + ..... $
$ \Rightarrow {}_{}^nC_0^{}{a^n} - {}_{}^nC_1^{}{a^{n - 1}}b + {}_{}^nC_2^{}{a^{n - 2}}{b^2} - {}_{}^nC_3^{}{a^{n - 3}}{b^3} + {}_{}^nC_4^{}{a^{n - 4}}{b^4} - {}_{}^nC_5^{}{a^{n - 5}}{b^5} + ..... $
As we can see in the above expansion 5th term is $ {}_{}^nC_4^{}{a^{n - 4}}{b^4} $ and 6th term is $ - {}_{}^nC_5^{}{a^{n - 5}}{b^5} $ .
The sum of 5th and 6th terms is zero as given in the question.
$ \Rightarrow {}_{}^nC_4^{}{a^{n - 4}}{b^4} - {}_{}^nC_5^{}{a^{n - 5}}{b^5} = 0 $
$ \Rightarrow {}_{}^nC_4^{}{a^{n - 4}}{b^4} = {}_{}^nC_5^{}{a^{n - 5}}{b^5} $
$ \Rightarrow \dfrac{{{}_{}^nC_4^{}}}{{{}_{}^nC_5^{}}} = \dfrac{{{a^{n - 5}}{b^5}}}{{{a^{n - 4}}{b^4}}} $
$ \Rightarrow \dfrac{{\left( {\dfrac{{n!}}{{4!\left( {n - 4} \right)!}}} \right)}}{{\left( {\dfrac{{n!}}{{5!\left( {n - 5} \right)!}}} \right)}} = \dfrac{b}{a} $
$ \Rightarrow \dfrac{5}{{n - 4}} = \dfrac{b}{a} $
Invert the numerator and denominator
$ \therefore \dfrac{a}{b} = \dfrac{{n - 4}}{5} $
Hence, the correct option is Option D, the value of $ \dfrac{a}{b} $ is $ \dfrac{{n - 4}}{5} $
So, the correct answer is “Option D”.
Note: Instead of expanding the total expression, we can directly find the 5th and 6th terms using a formula. This formula is the general form of the terms of a binomial expansion of $ {\left( {a - b} \right)^n} $ , which is
$ {T_{r + 1}} = {\left( { - 1} \right)^r}.{}_{}^nC_r^{}{a^{n - r}}{b^r} $ , where r can be less than or equal to n
Here we need 5th and 6th terms, so just substitute r=4 and r=5 respectively to get the terms.
When r is equal to 4, $ {T_{4 + 1}} = {T_5} = {\left( { - 1} \right)^4}.{}_{}^nC_4^{}{a^{n - 4}}{b^4} = {}_{}^nC_4^{}{a^{n - 4}}{b^4} $
When r is equal to 5, $ {T_{5 + 1}} = {T_6} = {\left( { - 1} \right)^5}.{}_{}^nC_5^{}{a^{n - 5}}{b^5} = - {}_{}^nC_5^{}{a^{n - 5}}{b^5} $
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

